Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент полезного действия тепловой машины

    В изложенных выше рассуждениях и выводах, имевших исходным пунктом второй закон термодинамики в формулировке Клаузиуса (или В. Томсона), основное внимание уделялось коэффициенту полезного действия тепловых машин, т. е. вопросу, имеющему, казалось бы, с точки зрения теории частный и узкий характер (хотя и очень важному для практики). Между тем результатом всех рассуждений явился вывод очень широкого, хотя не всеобъемлющего за кона природы, который правильнее всего назвать законом существования функции состояния энтропии и ее возрастания при самопроизвольных необратимых процессах. (Ряд исследователей видят здесь два отдельных, независимых положения.) [c.109]


    Из неравенства (4.20) следует, что коэффициент полезного действия тепловой машины с произвольным циклом работы [c.91]

    Процессы, которые в природе протекают сами собой, называются самопроизвольными или естественными. Процессы, которые требуют для своего протекания затраты энергии, называются несамопроизвольными. В изолированной системе, ввиду отсутствия внешнего воздействия, могут протекать только самопроизвольные процессы. Протекание таких процессов завершается равновесным состоянием, из которого сама система без сообщения ей энергии извне выйти уже не сможет. Определение условий, при которых будет протекать самопроизвольный процесс, и условий, при которых наступает состояние равновесия в системе, представляет большой теоретический и практический интерес. Но основании первого закона термодинамики нельзя сделать каких-либо выводов о направлении процесса и состоянии равновесия. Для выяснения этих вопросов используется второй закон термодинамики. Второй закон термодинамики, как и первый, — результат обобщения человеческого опыта и является одним из фундаментальных законов природы. Он был установлен в результате исследования коэффициента полезного действия тепловых машин. [c.218]

    Исторически начало развития термодинамики связано с изучением коэффициента полезного действия тепловых машин, откуда и происходит само название. [c.11]

    Коэффициент полезного действия тепловой машины [c.93]

    На основании этого соотношения второму началу термодинамики можно дать еще н такую формулировку коэффициент полезного действия тепловой машины не зависит от природы и вида тел, участвующих в процессе, а зависит только лишь от разности температур теплообменника (Т ) и теплоприемника (Т2). [c.69]

    Все эти выводы получены, как уже подчеркивалось, для идеального газа в качестве рабочего тела. Следовательно, коэффициент полезного действия цикла Карно есть максимальный коэффициент полезного действия тепловых машин, работающих циклами, и невозможно построить такую машину, которая, получив Q джоулей теплоты, превратила бы в работу больше энергии, чем riQ. [c.69]

    Экспериментально установлено, что если различные виды работы могут быть полностью обращены в теплоту и в идеальном случае могут полностью переходить друг в друга, то обратное преобразование невозможно, так как только некоторая часть теплоты превращается в работу при циклическом процессе. Здесь речь идет о закрытой системе, совершающей круговой термодинамический процесс, а не о единичном акте, так как в последнем случае согласно принципу эквивалентности преобразование тепла в работу можно произвести полностью. Такая система является, по сути дела, или тепловой машиной (система суммарно производит работу над источником работы), или холодильной машиной (источник работы суммарно производит работу над системой). Поэтому неудивительно, что изучение вопросов, связанных со вторым началом термодинамики, исторически обязано исследованию принципа действия тепловых машин, назначение которых состоит в превращении тепла в работу. В фундаментальном труде французского инженера Сади Карно Размышления о движущей силе огня и о машинах, способных развивать эту силу (1824) сделана первая, еще весьма несовершенная попытка сформулировать второе начало термодинамики. В труде Карно рассматриваются три основных вопроса 1) необходимое условие для преобразования теплоты в работу 2) условие, при котором трансформация теплоты в работу может достигнуть максимального эффекта 3) зависимость коэффициента полезного действия тепловой машины от природы рабочего вещества. В труде Карно был сделан совершенно правильный вывод, что коэффициенты полезного действия всех обратимых тепловых машин одинаковы и не зависят от рода работающего тела, а только от интервала предельных температур, в котором работает машина. [c.88]


    Коэффициент полезного действия тепловой машины не зависит от природы рабочего тела, а определяется только интервалом температур (теорема Карно— Клаузиуса). Эту теорему связывают с формулировкой второго закона термодинамики и выражают математически [c.35]

    Это отношение характеризует степень использования теплоты при превращении ее в работу. Ниже приведен вывод уравнения для вычисления коэффициента полезного действия тепловой машины, в которой тепло превращалось в работу по обратимому циклу Карно. [c.95]

    Впоследствии Клаузиус показал, что выражение (1.33 ) эквивалентно условию (1.33), чем и вызван наш интерес к коэффициенту полезного действия тепловой машины. [c.42]

    Смысл перехода от интеграла по замкнутому контуру к коэффициенту полезного действия тепловой машины при исследовании свойств энтропии в том и состоит, что именно в этом случае удается воспользоваться экспериментальными данными физики XIX в. и обосновать введение новой переменной на очень важном и хорошо изученном опытном материале. [c.43]

    Карно лемма (42) — для идеального газа в цикле Карно коэффициент полезного действия тепловой машины зависит только от температур теплоотдатчика (Tl) и теплоприемника (Т2) и равен (Tj — Tq)ITi. [c.311]

    Коэффициент полезного действия тепловой машины — см. Карно лемма (49). [c.311]

    Основатель термодинамики Сади Карно установил второе начало, изучая проблему возможного повышения коэффициента полезного действия тепловых машин. [c.62]

    По Карно, наибольший коэффициент полезного действия тепловой машины не зависит от природы рабочего тела и вполне определяется предельными температурами, между которыми машина работает (это в нашем обзоре —< седьмая формулировка второго начала). [c.62]

    Приведенное утверждение можно рассматривать как следствие невозможности перпетуум-мобиле второго рода. Схема рассуждений такова. Вначале берем в.качестве рабочего тела идеальный газ. Пользуясь уравнениями Клапейрона — Менделеева и Пуассона, подсчитываем коэффициент полезного действия тепловой машины, в которой идеальный газ в качестве рабочего тела совершает обратимый цикл, ограниченный двумя адиабатами и дв я изотермами (цикл Карно, рис. 7). Подсчет показывает, что коэффициент полезного действия равен разности температур теплоисточника и холодильника, деленной на абсолютную температуру теплоисточника. Выполним этот подсчет. Идеальный газ, содержащийся в цилиндре машины, расширяясь, выталкивает поршень и производит работу. При этом в первой изотермиче- [c.62]

    Как уже указывалось на стр. 222, живые организмы работают не по принципу тепловой машины. Напомним, что коэффициент полезного действия тепловой машины может быть достаточно высок лишь при наличии большого перепада температур в работающем механизме машины. Такой перепад температур абсолютно несовместим с сохранением жизни клетки. Таким образом, необходимо признать, что энергия, освободившаяся при тканевом дыхании в форме теплоты, не может уже быть использована для выполнения физиологической работы. [c.248]

    Коэффициент полезного действия тепловой машины. При обратимом цикле с идеальным газом [c.653]

    В 1834 г. Клапейрон развил идеи и выводы Карно и ввел весьма ценный для дальнейших исследований по термодинамике метод графического изображения хода процессов. Р. Майер в своих исследованиях также обратил внимание на разность температур в двигателе как фактор получения механической работы и указал па низкий коэффициент полезного действия тепловых машин. [c.410]

    Как известно, коэффициент полезного действия тепловой машины Карно т) не зависит от природы рабочего тела, а зависит только от температур нагревателя 0 и охладителя 0 . В самом деле, допущение возможности создания второй тепловой машины, которая, работая по циклу Карно с другим рабочим телом, но при тех же температурах нагре- [c.27]

    Таким образом, коэффициент полезного действия тепловой машины, работающей по обратимому циклу Карно, не зависит ни от природы рабочего тела, ни от каки х-л ибо иных условий, а является функцией исключительно температур нагревателя и охладителя. [c.28]

    Коэффициент полезного действия тепловой машины Карно можно выразить также и функцией только одного аргумента (температуры). [c.28]

    Для того чтобы использовать уравнение (14) в целях построения температурной шкалы, необходимо установить вид функции / (0). Как указано выше, коэффициент полезного действия тепловой машины Карно не зависит от выбора рабочего тела, и, следовательно, функция Р д) является универсальной, т. е. одинаковой для всех веществ. Однако о виде этой функции термодинамика не может дать никаких сведений. Поэтому, так же как и в общем случае установления температурной шкалы по любому термометрическому параметру (стр. 23), вид функции / (0) можно выбрать лишь произвольно. [c.29]


    Использование коэффициента полезного действия тепловой машины Карно позволило установить температурную шкалу, независимую от физических свойств какого-либо. ве- ш,ества, но еще не дало возможности осуществить эту шкалу на практике. В самом деле, измерение термодинамической температуры на основе уравнения (20) сводилось бы к из- [c.33]

    Можно также установить следующие положения, касающиеся коэффициента полезного действия наибольший коэффициент полезного действия тепловой машины не зависит от природы тел, участвующих в работе машины, а только от разности температур теплоотдатчика (нагревателя) и теплоприемника (холодильника). [c.65]

    I наибольший коэффициент полезного действия тепловой машины I не зависит от природы тел, участвующих в работе машины, а только I от разности температур теплоотдатчика и теплоприемника-, [c.85]

    Из уравнения (П1.53) следует, что коэффициент полезного действия тепловой машины зависит только от температур теплоотдатчика и теплоприемника. [c.114]

    КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТЕПЛОВОЙ МАШИНЫ [c.71]

    Коэффициентом полезного действия тепловой машины т называется отношение количества полученной работы А к количеству поглощенной теплоты Q но Л = Ql—Рг, где Рг — количество теплоты, отданное теплоприемнику, следовательно, [c.103]

    Наибольший коэффициент полезного действия тепловой машины не зависит от природы и вида тел, участвующих в процессе, а зависит только лишь от разности температур теплоотдатчика (Тх) и теплоприемника (Т2). [c.103]

    Выражение (III, 4) получено без каких-либо предположений относительно обратимости машины //. Поэтому оно может относиться как к обратимому, так и необратимому процессам. Из выражения (III, 46) следует, что знак равенства относится кобра-т и м ы м циклам. Следовательно, знак неравенства относится к необратимым циклам. В этих циклах необратимость связана, на-гфимер, с тем. что часть работы путем трения превращается в теплоту, вследствие чего уменьшается коэс[)фициент полезного дейст-ния цикла. Таким образом, коэффициент полезного действия тепловой машины, работающей необратимо, меньше, чем коэффициент полезного действия машины, работающей п обратимому циклу Карно между теми же температурами. [c.83]

    Коэффициентом полезного действия тепловой машины т] называется отношение количества полученной работы W к количеству поглои снной теплоты Q  [c.69]

    Если тепловая машина работает термодинамически обратимо, то к. п. д. такой машины не зависит от природы рабочего тела. Если бы к. п. д. ее зависел от природы рабочего тела, то можно было бы построить вечный двигатель второго рода. Следовательно, второе начало термодинамики можно сформулировать еще и так коэффициент полезного действия тепловой машины, работающей термодинамически обратимо, не зависит от рода рабочего тела, а зависит лишь от разности температур теплоотдатчика и теп-лоприемника (четвертая формулировка второго начала термодинамики). То, что к. п. д. тепловой машины, работающей термодинамически обратимо, определяется разностью температур теплоотдатчика и теплоприемника, непосредственно следует из основного термодинамического цикла (цикла Карно), [c.85]

    Итак, если только ограничиться рассмотрением обратимых процессов, то предположение об аналогичном характере тепловой энергии и других видов энергии в том отношении, что энергию любого вида можно представить как произведение потенциала на фактор емкости, приводит к уравнениям для вычисления коэффициентов полезного действия тепловых машин. Эти уравнения аналогичны уравнениям, применяющимся для расчета коэффициентов полезного действия других обрати-мьих машин и для установления абсолютной шкалы температур. Заметим попутно, что влияние необратимого течения процессов на коэффициент полезного действия будет рассмотрено в приложении С. Обычно вопросы, упомянутые выше, излагаются в учебниках после того, как сформулировано второе начало термодинамики. Но сейчас ясно, что они связаны с элементарным толкованием действия обратимых машин, основанным на приложении уравнений (11.1) — (11-4) к тепловой энергии. Если бы мы были готовы принять представление о тепловой энергии еще до подробного обсуждения первого начала термодинамики, то можно было бы 11.8 поместить после 11.4. И действительно, существует ряд данных, свидетельствующих, что этим ходом рассуждений пользовался Сади Карно, правда, возможно, в известной мере интуитивно и е отдавая себе полного отчета о вытекающих из него практических следствиях. Сади Карно еще в 1824 г. дал правильное уравнение для вычисления коэффициента полезного действия тепловой машины, задолго до того как были сформулированы [c.225]

    Коэффициентом полезного действия тепловой машины т] натзшается отношение количества полученной работы А к количеству поглощенной теплоты Q . [c.88]

    Отсюда следует, что коэффициент полезного действия тепловой машины не может быть равным единице, так как это по-требо вало бы, чтобы температура холодильника равнялась абсолютному нулю, т. е. Гг = О в уравнении (127). [c.144]


Смотреть страницы где упоминается термин Коэффициент полезного действия тепловой машины: [c.213]    [c.67]    [c.41]    [c.304]    [c.104]    [c.210]    [c.137]    [c.30]    [c.85]   
Смотреть главы в:

Химическая термодинамика -> Коэффициент полезного действия тепловой машины


Физическая химия и химия кремния Издание 3 (1962) -- [ c.297 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент полезного действия



© 2025 chem21.info Реклама на сайте