Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антагонисты для медиаторов

    Вторым медиатором торможения, которому приписывается существенная роль в работе мозга человека, является глицин. В спинном и продолговатом мозге концентрация глицина достигает 3—5 мМ, но в коре больших полушарий он содержится в небольшом количестве. Стрихнин (рис. 15-7) служит специфическим антагонистом рецепторов глицина в спинальных синапсах. Имеются данные, что действие столбнячного токсина обусловлено торможением высвобождения глицина из нейронов [77, 78]. [c.340]


    Ацетилхолин обеспечивает местную деполяризацию нейромышечной пластинки, т. е. появление потенциала концевой пластинки. Те соединения, которые оказывают на нее такое же действие, как и природный медиатор, называются агонистами, а вещества, ингибирующие действие агонистов, называются антагонистами (рис. 8.8). Постсинаптическая мембрана должна обладать структурами, которые могут точно идентифицировать и дифференцировать эти соединения. Связывающий, или рецепторный, белок (подобно ферменту) в специальном активном центре связывает низкомолекулярный лиганд с высоким сродством и селективностью. Это связывание обратимо, т. е. процесс ассоциации — диссоциации медиатора и рецептора находится в равновесии. [c.202]

    При изучении нейромедиаторов важное значение имеет подбор специфических агонистов, имитирующих действие медиатора, или антагонистов, блокирующих это действие. В зависимости от чувствительности к одной или другой группе соединений холинэргические нейроны делятся на мускариновые (активируемые мускарином, рис. 16-6) или никотиновые (активируемые никотином) [46]. Мускариновые рецепторы, имеющиеся во многих нейронах автономной нервной системы, специфически блокируются атропином и декаметонием (рис. 16-6). Никотиновые синапсы присутствуют в ганглиях и скелетных мышцах. Их ингибиторами являются кураре и активный компонент этого яда D-тубо-курарин (рис. 16-6), а также белок из змеиного яда а-бунгаротоксин (рис. 16-7). Этот токсин был, в частности, использован для титрования рецепторов ацетилхолина в моторной концевой пластинке диафрагмы крысы. Было показано, что количество рецепторов в расчете на одну пластинку составляет примерно 4-10 (или 13000 рецепторов на [c.332]

    Среди антагонистов медиаторов аллергии, составляющих третью группу A. ., широко используют лишь блокаторы [c.171]

    Они действуют как неконкурентные антагонисты, блокирующие ионный транспорт через постсинаптические мембраны и не конкурирующие с медиатором за участок связывания на рецепторе. [c.209]

    Исходя из такой интерпретации, рецептор нейромедиатора (или гормона) должен существовать по крайней мере в двух состояниях неактивном или состоянии покоя (I) и в активном (А) состоянии (рис. 9.2). Равновесие между этими состояниями зависит от природы нейромедиатора (или гормона). Соединения, которые, подобно медиатору, благоприятствуют активному состоянию, называются агонистами, а те, которые смещают равновесие в сторону неактивного состояния,— антагонистами. Обсудим несколько моделей, используемых для количественного анализа результатов и установления взаимосвязи между концентрацией и ответом в случае медиаторов и других фармакологически активных соединений. [c.247]


    Для любого специалиста в этой области — работает ли он в основном с ферментами или с рецепторами — трудно отличить одну модель от другой. В случае нейромедиаторов интерпретация экспериментальных данных даже более затруднена, так как антагонист всегда ингибирует связывание агониста. Он может также ингибировать одну из стадий процесса, протекающую после связывания, например транспорт ионов через открытый канал, закрыв его как пробка в трубке, или сопряжение между связывающим центром медиатора и ионным каналом, т. е. открывание канала. Первый механизм, по-видимому, лежит в основе действия многих местных анестетиков, тогда как второй относится к некоторым эффекторам адренэргических рецепторов (см. ниже). [c.248]

    Поиск новых биологически активных веществ дает удовлетворительные результаты при синтезе антагонистов тех веществ, которые участвуют в жизнедеятельности организма (медиаторы, витамины, гормоны) или являются незаменимыми участниками биохимических процессов (субстраты ферментов, коферменты и др.). [c.31]

    К А. с. четвертой группы относят специфич. антагонисты медиаторов, препараты, подавляющие общую возбудимость этих тканей, напр, стимуляторы -рецепторов и антагонисты фосфодиэстеразы, расслабляющие гладкую мускулатуру, а также глюкокортикостероиды. Действие последних обусловлено их противовоспалит. св-вами, торможе- [c.171]

    В настоящее время имеются данные [361, 569], свидетельствующие, что активируемые медиаторами рецепторы существуют в четырех взаимопревращающихся конформациях энергетически усто швой высокоаффинной к антагонистам нативной форме (Л7), энергетически неустойчивой высокоаффинной к агонистам активной форме ( ) и в рефрактерШ11Х формах (Л/ и Rp), т.е. в состояниях быстр медленно развивающейся десенситизации (рис. 9.7, 1-4) Аф<3 ин-ность к агонистам повышается от Ку к Кр через и К , а взаимодействие любого медиатора с рецептором-каналом описывается двухступенчатой схемой на первом этапе происходит быстр е связывание медиатора (см. рис. 9.7, 13) и рецептора с образованием нерабочего пре-комплекса (см. рис. 9.7,2), а последний относительно медленно изоме-ризуется в активный комплекс (см. рис. 9.7, 5) с открытым каналом. Двухступенчато взаимодействуют с рецепторами также модуляторы, например флунитразепам с БДР [412]. [c.145]

    Фрагменты постсинаптической мембраны проявляют одно важное свойство, использование которого помогает переброспть мост понимания между физиологией интактного организма и его биохимией. Они легко образуют замкнутые везикулы (не путать с синаптическими везикулами, содержащими пресинаптическпй медиатор), которые сохраняют основные биологические свойства мембраны так, например, поток ионов через мембрану активируется ацетилхолином и другими агонистами и ингибируется а-нейротоксинами и другими антагонистами. В эти везикулы вводили суспензию разбавляли физиологическим буфером, взятую через известные промежутки времени аликвоту отфильтровывали с тем, чтобы измерить количественно выход радиоактивности (рис. 9.9). Если растворяющий буфер содержал агонист, выход 2 Na+ увеличивался. Зависимость доза — ответ, построенная по полученным данным, была очень близка кривой, полученной при измерениях in vivo. [c.261]

    Действие веществ, взаимодействующих с рецептором медиатора, может быть двояким. Одни из них вызывают деполяризацию постсинаптической мембраны, подобно медиатору, т. е. они имитируют действие медиатора. Такие лиганды называют агонистами или миметиками. Другие, присоединяясь к рецептору, не вызывают в нем изменений, обеспечивающих проведение импульса с другой стороны, они блокируют присоединение медиатора — это антагонисты, или литики. [c.544]

    До недавнего времени изучение рецепторов осуществлялось лищь косвенным образом. Различные соединения испытывали на способность стимулировать или блокировать биологический процесс. По результатам судили о структурных характеристиках, необходимых для взаимодействия с данным рецептором. В последние 10—15 лет благодаря использованию радиоактивных молекул были разработаны более действенные методы, облегчающие оценку структурных параметров, необходимых для связывания рецептора. При выделении и изучении рецепторов успепшо применялись физико-химические методы (ЯМР, спектроскопия). В результате было установлено существование двух типов агентов, взаимодействующих с рецепторами, а именно агонистов и антагонистов. Агонисты — это соединения, вызывающие биологическую реакцию. К этой группе относятся природные гормоны и медиаторы, а также лекарственные средства, полученные химическим путем. Антагонисты, напротив, блокируют биологическую реакцию, присоединяясь к рецептору и препятствуя выполнению им своих функций. [c.97]

    Трудно удержаться от попытки предсказать, в лечении каких именно болезней будут сделаны наиболее впечатляюпще открытия в грядущем десятилетии. Вероятно, новые направления в исследовании рецепторов будут способствовать разработке лекарственных средств против сердечно-сосудистых заболеваний, в особенности атеросклероза и гипертонии, а также нарущений эндокринной системы, например диабета. Последние исследования онкогенов вирусов ведут к пониманию на молекулярном уровне причин заболевания некоторыми видами рака у человека, открывая, таким образом, новые пути для создания противораковых средств. Достижения в области управления иммунной системой создают предпосылки для нового подхода к лечению многих воспалительных заболеваний, например артрита. Успехи нейробиологов должны привести к разработке новых лекарственных средств, воздействующих на центральную нервную систему. Наконец, открытие новых ингибиторов ферментов и антагонистов гормонов и медиаторов, безусловно, приведет к разработке новых важных лекарственных препаратов. Но это, конечно, не все. На научном небосклоне всегда ярче светят звезды непредсказуемых открытий, более значительных, чем любые наши предвидения. [c.111]


    Далее возникает вопрос, соответствуют ли эти независимые участки связывания самого глутамата тем рецепторным компонентам на мембране нейрона, которые способны вызывать физиологический ответ клетки на данный медиатор. Оказалось, что сродство и константа диссоциации, полученные экспериментальным биохимическим методом, находятся в пределах физиологических концентраций действия Ъ-глутамата на нейроны позвоночных. Такие показатели реакции связывания нейромедиатора, как насыщаемость и обратимость, соответствуют аналогичным свойствам глутаматного рецептора, регистрируемым с помощью электрофизиологических методов. Более того, чувствительность к ряду известных агонистов и антагонистов, таких как КМОА, каинат, квисквалат и другие, бьша сходна с физиологическими ответами. Следует упомянуть, что характер связывания нейромедиатора в присутствии ионов Ка существенно отличается от рецепторного взаимодействия и коррелирует с параметрами высокоаффинного поглощения Ь-глутамата клетками, регистрируемыми физиологически. Все это иллюстрирует пути оценки параметров связьшания нейромедиатора и специфические трудности, возникающие при такой оценке. [c.266]

    Изучение эндокринной регуляции метаболизма с им-мунохимпческих позиций получило в последнее время новый существенный стимул. Антитела к некоторым гормонам п медиаторам (инсулину, -адренэргическому антагонисту — алпренололу) использовали для получения антиидиотипических антител и анализировали их способность конкурировать с некоторыми лигандами или имитировать их действие. Эти антитела реагировали с клеточными рецепторами для гормонов илн медиаторов строго специфично, т. е. в зависимости от того, каким по специфичности антителом они были индуцированы. Существенно, что антиидиотипические антитела npoTjm антител к гормону при добавлении к клеткам имитировали [c.266]


Смотреть страницы где упоминается термин Антагонисты для медиаторов: [c.6]    [c.43]    [c.337]    [c.127]    [c.642]    [c.261]    [c.635]    [c.209]    [c.212]    [c.231]    [c.231]    [c.287]    [c.292]    [c.294]    [c.329]    [c.131]    [c.212]    [c.267]    [c.400]    [c.422]    [c.122]    [c.59]    [c.34]    [c.266]    [c.6]   
Биохимия Том 3 (1980) -- [ c.332 ]




ПОИСК







© 2024 chem21.info Реклама на сайте