Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ренатурация

    Разработанный Ферштом эмпирический подход к изучению термодинамических и кинетических аспектов свертывания белковой цепи с привлечением сайт-направленного мутагенеза позволил автору и сотрудникам проанализировать все этапы формирования трехмерной структуры белка (барназы), не содержащего дисульфидных связей [31-33]. Изучение обратимой денатурации начинается с тщательного визуального анализа трехмерной структуры белка с целью выявления остатков, которые предположительно могут играть важную роль в структурной стабилизации и кинетике свертывания. Следующий этап заключается в модификации потенциально важных для сборки межостаточных взаимодействий путем специальных химических изменений белковых цепей актуальных остатков и сайт-направленного мутагенеза. Завершается этап составлением оптимального набора и его синтеза методами генной инженерии. Далее проводятся термодинамические и кинетические экспериментальные исследования механизма ренатурации (денатурации) нативного белка и мутантов, определения констант равновесия, констант скорости и величин изменений свободной энергии Гиббса стабильных структур, промежуточных и переходных состояний. Найденные значения используются для построения энергетических профилей путей свертывания белковых цепей дикого и мутантного типов. На их основе определяются разностные энергетические диаграммы, которые показывают различия в уровнях энергии всех состояний на пути свертывания белка и мутантов. Реализация описанной процедуры приводит к эмпирическим зависимостям между важными для свертывания белковой цепи взаимодействиями боковых цепей и параметрами, по мысли Фершта, характеризующими кинетику, равновесное состояние и механизм ренатурации [И]. Каждая мутация, которая в [c.87]


    Биохнмич. эффекты высоких Д. При Д в неск. сотен МПа происходит денатурация белков, при этом меняются их антигенные св-ва, снижается активность токсинов. Особенно чувствительны к Д. процессы образования связей белок-лиганд и белок-белок. Так, для белков характерно значив уменьшение скорости ассоциации с повышением Д. (AV положительны и могут исчисляться сотнями см /моль). Денатурирующее влияние Д. зависит от природы белка, т-ры и pH среды. Напр., овальбумин необратимо коагулирует при 800 МПа, тогда как р-ры альбумина не претерпевают изменений даже при 1,9 ГПа. Д. может препятствовать тепловой денатурации белка и даже вызывать ренатурацию белка, де- [c.621]

    Скорость процесса ренатурации ДНК обычно описывают уравнением [c.30]

    Денатурация — любые вызванные физическими и химическими воздействиями изменения, которые при сохранении первичной структуры белка сопровождаются большей или меньшей потерей его биологической активности и других индивидуальных свойств белка. При денатурации ослабляются гидрофобные взаимодействия, разрываются водородные связи, а в присутствии восстановителей и дисульфидные связи. Денатурация с разрывом невалентных связей обычно обратима. Путем образования новых невалентных связей, а также благодаря взаимодействию с денатурирующим веществом новая конформация стабилизируется. Возникающее метастабильное состояние при восстановлении физиологических условий может вернуться к нативной конформации ренатурация). Принципиально возможна ренатура-ция и при восстановительном расщеплении дисульфидных связей (рис. 3-8). [c.358]

    Рассмотренные нами структуры отдельных РНК — предшественник РНК-тирозинтрансферазы [5] и прерванная последовательность рибосомальной РНК [6] — были изучены экспериментально при условиях ренатурации. Иными словами, их скручивание произошло при условиях без ограничений в противоположность тому, что можно было ожидать в ходе транскрипции, в которой зарождающийся конец молекулы ограничен, следуя за транскриптазой. Полагают, что кинетика скручивания является достаточно быстрой для того, чтобы следовать за транскрипцией, и поэтому может оказаться, что ограничение, налагаемое на один конец и не позволяющее двигаться свободно, — решающий посредствующий фактор. Экспериментальные данные, подтверждающие такую точку зрения, отсутствуют, но также не ясно, какой должна быть эта посредствующая роль при условии, что вторичная структура высоко-специфична по последовательности аминокислот. [c.528]

    Исследования механизма свертывания, отвечающие второму подходу к установлению структурной организации белка, базируются на многочисленных физических, химических и биологических методах исследования, которые дают прямую или косвенную информацию о геометрических, термодинамических и кинетических аспектах процессов денатурации и ренатурации, механизме клеточного синтеза аминокислотной последовательности и взаимодействия белковых цепей с шаперона-ми. В исследованиях этого плана, как и предшествующего, надежда возлагается на то, что в результате анализа экспериментальных данных в конечном счете удастся разработать эмпирические правила, позволяющие предсказывать по известному химическому строению белка основные этапы свертывания, в первом случае, и нативную пространственную структуру, во втором. Далее, предполагается, если эти цели будут достигнуты, то станет ясно не только как возникает физиологически активная конформация, но и почему она возникает, т.е. бу- [c.77]


    Разумеется, без достаточных экспериментальных подтверждений мы не можем настаивать на таком объяснении, однако это и не так уже существенно. Важен надежно установленный экспериментальный факт для элюции нативной ДНК (или двунитевой РНК, а также гибридных молекул ДНК—РНК) с оксиапатита требуется почти вдвое более высокая концентрация фосфатного буфера, чем для элюции денатурированной ДНК или однонитевой РНК. Это обстоятельство открыло возможность быстрого и надежного отделения двунитевых молекул нуклеиновых кислот от однонитевых, что сыграло очень важную роль как в изучении структуры генома (исследования кинетики ренатурации), так и в развитии современных методов генной инженерии (гибридизация молекул НК и др.). Как и в случае кислых белков, присутствие даже относительно высоких концентраций неорганических солей в элюирующем буфере практически не сказывается на процессах элюции одно- и двунитевых молекул НК с оксиапатита. Вместе с тем, варьируя концентрацию Na l или КС1 в буфере, можно управлять изменением конформации самих нуклеиновых кислот, а также характером их гибридизации (например, отделять истинные , полноценные, гибридные молекулы от несовершенных гибридов ). [c.230]

    Свертывание белковой цепи. Для познания принципов структурной организации белковых молекул чрезвычайный интерес представляет явление денатурации (ренатурации). Переход нативной конформации белка в развернутую неструктурированную форму и обратный переход флуктуирующего статистического клубка в исходную компактную трехмерную структуру есть не что иное, как процессы разрушения и формирования именно тех самых связей, которые и обусловливают структурную организацию белковой молекулы. Анализ работ, посвященных экспериментальным и теоретическим исследованиям денатурации белков, был начат в предшествующем томе [2. Ч. III]. Перед тем как продолжить эту тему, кратко напомним основные итоги уже проведенного обсуждения. [c.81]

    Палиндромы в ДНК обнаруживаются путем кратковременной ренатурации денатурированной ДНК, гидролиза всей не успевшей ренатурировать ДНК нуклеазой S1 (специфической для однонитевой ДНК) и задержания на колонке оксиапатита двунитевых фрагментов, которые в этих условиях образуют только палиндромы. Лин и Ли [Lin, Lee, 1979] вели денатурацию фрагментированной ультразвуком ДНК в щелочной среде, а ренатурацию — путем быстрой нейтрализации раствора и выдерживания его при повышенной температуре в течение 2 с. Затем раствор энергично охлаждали до 4° и диализовали на холоду против 0,1 М Na-ацетатного б фера (pH 5), содержавшего 0,1 мМ ацетата цинка, что необходимо для действия нуклеазы S1. Кроме того, к раствору добавляли половинный объем диоксана, который, как оказалось, почти втрое ускоряет и повышает эффективность действия фермента. Наконец, вносили саму нуклеазу 81 (80 ед/мл), выдерживали 45 мин при 37°, а затем, как обычно, гидролизат переводили диализом в 0,12 М Na-фосфат- [c.242]

    Итак, благодаря избирательности бифуркационных флуктуаций и их строгой согласованности структурная самоорганизация белковой молекулы приобретает детерминистические черты (случайность порождает необходимость). Из конформационно жестких и взаимодействующих с ними лабильных фрагментов возникают нуклеации, которые через ряд чисто случайных, но тем не менее неизбежных и строго последовательных событий входят в домены или в нативную трехмерную структуру белка. Весь процесс самосборки пространственной структуры не требует времени больше, чем затрачивается на рибосомный синтез белковой цепи. Уникальность бифуркаций, порядок их возникновения и устойчивый конструктивный характер обусловлены конкретной, отобранной в ходе эволюции аминокислотной последовательностью. В то же время рассматриваемая модель свертывания не исключает образование "неправильных" промежуточных состояний, содержащих структурные элементы, отсутствующие в конечной конформации. Более того, поскольку в основу модели положен беспорядочно-поисковый механизм, осуществляющий сборку белка методом "проб и ошибок", то возникновение непродуктивных состояний белковой цепи становится неизбежным. Однако они нестабильны, так как продуктивные состояния, появляющиеся в результате бифуркационных флуктуаций, всегда более предпочтительны по энергии. К обсуждению этого вопроса вернемся в главе 17 при количественном описании механизма ренатурации панкреатического трипсинового ингибитора. [c.98]

    Имеется еще одно возражение против гипотезы о расплавленной глобуле, использующейся вместе с аппаратом равновесной термодинамики и формальной кинетики для объяснения экспериментальных фактов. Конкретной теоретической основой интерпретации данных о денатурации служит термодинамическая теория двух состояний Брандтса [12, 13]. Как уже отмечалось, белковая молекула в растворе, согласно этой теории, может быть представлена большим количеством микросостояний. Все они входят в состав либо распределения N (нативное макросостояние белка), либо О (денатурированное макросостояние). Теория Брандтса сделала возможным относительно простой термодинамический анализ конформа-ционного перехода N — О в предположении, что реализующиеся микросостояния не являются чем-то вновь созданным, а присутствуют в распределении N и О. Это означает, что в теории постулируется отнюдь не очевидное положение об отсутствии новых промежуточных конформационных состояний в области перехода N - О. Следовательно, главный критерий справедливости теории двух состояний Брандтса состоит в требовании отсутствия максимумов, минимумов и потенциальных ям в наблюдаемых изменениях энтальпии и энтропии при переходе от О к N (и наоборот). Иными словами, если образование трехмерной структуры белка происходит, как того требует теория двух состояний, путем постоянного усложнения и приближения к нативному состоянию, то изменения энтальпии, энтропии и свободной энергии по ходу ренатурации должны быть монотонными. Отсутствие экстремумов означает отсутствие между нативной структурой и статистическим клубком метастабильных промежуточных состояний. Механизм сборки белка проходит в этом случае в одну стадию. А теперь обратимся вновь к обсуждаемой гипотезе о расплавленной глобуле в которой постулируется образование на пути к нативной структуре близкое к ней промежуточное состояние. При существовании достаточно устойчивых обнаруживаемых экспериментально интермедиатов зависимости изменений энтальпии, энтропии и свободной [c.85]


    На рис. 107, б представлен лишь один из вариантов выявляемых кривых реассоциации ДНК эукариот, которые могут существенно различаться даже у близкородственных видов. Подобные результаты, полученные для геномов самых разных представителей эукариот, привели к заключению, что существенная часть генома (15—40 % или более, имеются значительные вариации для разных организмов) состоит из повторяющихся в разной степени последовательностей ДНК. Различают уникальные, умеренно повторяющиеся и высокоповторяющиеся последовательности ДНК эукариот, соответствующие трем выявляемым при ренатурации фракциям. Деление фракций на умеренно и высоко повторяющиеся достаточно условно. Гибридизационные методы дают достаточно грубую валовую характеристику генома в целом. Оценки числа копий генов, проведенные гибридизационными методами, не всегда давали правильные результаты вследствие ряда артефактов, сопровождающих эти эксперименты. [c.188]

Рис. 3-8. Денатурация и ренатурация на примере панкреатической рибонуклеазы (по Анфинсену). Рис. 3-8. <a href="/info/988">Денатурация</a> и ренатурация на примере <a href="/info/102112">панкреатической рибонуклеазы</a> (по Анфинсену).
    Благодаря использованию химических методов детальная картина организации хромосом начинает вырисовываться более четко. В одном М3 типов экспериментов ДНК разрезают на фрагменты, включающие приблизительно по 10 000 пар оснований, и затем эти фрагменты денатурируют нагреванием. Оказалось, что при охлаждении ренатурация образовавшихся одноцепочечных фрагментов протекает по меньшей мере в два этапа. В одной части материала структура двойной спирали быстро восстанавливается, тогда как в другой части ренатурация протекает медленно (рис. 15-34) [273—275]. [c.298]

    Достижения молекулярной биологии за последние тридцать лет во многом основаны на результатах физико-химических исследований биологических систем. Предлагая гипотезу о двойной спирали ДНК, Дж. Уотсон и Ф. Крик использовали наряду с другими фактами результаты физико-химических исследований растворов ДНК. В дальнейшем эта гипотеза блестяще подтвердилась целым рядом исследований, среди которых видное место занимает физическая химия денатурации и ренатурации ДНК. Большую роль сыграли также электрохимические исследования полиэлектролитных свойств нативной и денатурированной ДНК. [c.8]

    Нативный К. плохо раств. в воде при pH ок. 7. При умеренном нагревании в водных р-рах К. денатурирует с разрывом нековалентных связей-а-цепи расплетаются, плавятся с образованием желатина. При ренатурации а-цепи могут образовывать димеры (Д-частицы) или тримеры (у-частицы), к-рые могут образовывать спираль. [c.433]

    Различие в прочности сорбции на оксиапатите нативной (дву-нитевой) и денатурированной (однонитевой) ДНК широко используется для исследования структурного состава ДНК по скорости ее ренатурации в ходе отжига , для выявления однонитевых участков, для отделения гибридных молекул (ДНК—РНК) от однонитевых партнеров и др. [c.241]

    Согласно другим данным, некоторые из повторяющихся последовательностей распределены по всему геному случайно. Об этом свидетельствует, например, тот факт, что при ренатурации фрагментов ДНК Дрозофилы образуются кольца ДНК, которые можно увидеть с помощью электронного микроскопа [278]. Кольца во время ренатурации могут образовываться в результате фрагментации внутри повторяющихся последовательностей. В хромосомах Хепориз может содержаться около -25% таких повторяющихся последовательностей. Данные, полученные при электронной микроскопии, свидетельствуют о том, что случайная реассоциация фрагментов ДНК приводит к образованию двухцепочечных участков, содержащих повторяющиеся нуклеотидные последовательности, с одноцепочечными хвостами . Последние обычно не спариваются, поскольку содержат уникальные последовательности, пришедшие из разных генов. У Хепори повторяющиеся фрагменты ДНК включают приблизительно 300 нуклеотидов, а неповторяющиеся, или уникальные, фрагменты, расположенные между ними, — приблизительно 800 нуклеотидов [275]. [c.298]

    Согласно бифуркационной теории механизмы свертывания белковой цепи в процессе ренатурации и по ходу рибосомного синтеза не должны иметь принципиальных отличий. Главное, что в обоих случаях структурная самоорганизация проходит через одну и ту же последовательность бифуркационных флуктуаций, ведущих к идентичным нативным конформациям. Различия, безусловно, есть, но они несущественны, поскольку не ставят под сомнение утверждение, что аминокислотная последовательность однозначно определяет трехмерную структуру белковой молекулы. Механизмы сборки в обоих случаях едины по своей природе и случайно- [c.104]

    По истечении выбранного для ренатурации врел1ени раствор ДНК вносят на колонку оксиапатита, уравновешенную в 0,12 М Na-фосфатным буфером и термостатированную при критической температуре отжига. Колонку промывают 5 —10 объемами того же (подогретого) буфера в первых порциях элюата из колонки выходит однонитевая ДНК. Затем, не снижая температуры, увеличивают концентрацию элюирующего фосфатного буфера до 0,4—0,5 М ири этом с оксиапатита десорбируется двунитевая ДНК. Количество той и другой ДНК можно оценить ио площади ников оптической илотности с учетом гиперхромизма однонитевой ДНК или по радиоактивности. [c.241]

    В представленном в этом разделе кратком описании расчетных методов нашли отражение основные тенденции развития конформационного анализа пептидов и белков в последнее время. Несмотря на многочисленность и видимое разнообразие новых теоретических разработок, их сближает ряд общих черт принципиального характера, причем тех же самых, что были присущи предшествующим теоретико-методологическим исследованиям. Отмечу лишь три таких особенности. Во-первых, практически все предложенные методы расчета исходят из предположения, что нативная трехмерная структура белка имеет самую низкую внутреннюю энергию. Поэтому конечная цель каждого метода состоит в установлении глобальной конформации молекулы по известной аминокислотной последовательности. Такое предположение, сформулированное более 40 лет назад, до сих пор не встретило каких-либо противоречий со стороны экспериментальных фактов и, следовательно, может считаться оправданным. Во-вторых, в последние годы, как и ранее, во всех случаях предпринимались попытки подойти к расчету глобальной конформации белка путем усовершенствования предсказательных алгоритмов, процедур минимизации и вычислительной техники. Надежды на решение структурной проблемы по-прежнему связываются не с более глубоким проникновением в молекулярную физику белка и разработкой соответствующих теорий, а главным образом с достижением в области методологии теоретического конформационного анализа и развитием компьютерной аппаратуры. Между тем такой подход в принципе не может привести к априорному расчету глобальной конформации белка. В разделе 2.1 уже указывалось, что перебор со скоростью вращательной флуктуации (10 с) всех мыслимых конформационных состояний даже у низкомолекулярной белковой цепи (< 100 остатков) занял бы не менее 10 лет. Следовательно, при беспорядочно-поисковом механизме сборка белка как в условиях in vivo в процессе рибосомного синтеза, так и в условиях in vitro в процессе ренатурации не может осуществляться через селекцию конформации всех локальных минимумов потенциальной поверхности. Реальные же возможности самых совершенных современных методов расчета ограничены независимым анализом тетра- и пентапептидов, рассчитанных четверть века назад. Ни один из существующих теоретических методов не в состоянии проводить конформационный анализ сложных олигопептидов, а тем более белков, без привлечения дополнительной информации - результатов прямого эксперимента, касающегося исследуемого объекта, или статистической обработки имеющихся структурных данных. В-третьих для всех предложенных методов расчета характерно отсутствие классификации пептидных структур, оправданной с физической точки зрения и [c.246]

    Важнейшим достижением в изучении механизмов структурной организации белков явились экспериментальные исследования Крейтона 1970-1980-х годов, особенно его работы, посвященные эмпирическому подходу к изучению промежуточных состояний обратимой денатурации цистинсо-держащих белков [29, 30]. Разработанные Крейтоном методы позволяют Идентифицировать дисульфидные связи, регулировать скорость их образования и разрушения и по последовательности возникающих промежуточных MOHO-, ди- и т.д. S-S-продуктов следить за ходом свертывания белковой цепи. Предпринятое им на этой основе исследование пути свертывания панкреатического трипсинового ингибитора [29] опережает и сейчас, по прошествии двух десятилетий, научный уровень аналогичных работ по ренатурации других белков. Подход Крейтона, однако, неприемлем для белков, лишенных S-S-мостиков. [c.86]

    Скорость восстановления (ренатурации) двойной спирали зависит от вероятности столкновения двух комплементарных нуклеотидных последовательностей и их концентрации в растворе. Скорость реакции гибридизации можно использовать для определения концентрации любьсс последовательностей РНК или ДНК в смеси, содержащей и другие фрагменты нуклеиновых кислот. Для этого необходимо иметь чистый одноцепочечный фрагмент ДНК, комплементарный к тому фрагменту, который надлежит выявить. Обычно фрагмент ДНК, полученный клонированием либо химическим путем, метят по Р в целях прослеживания включения фрагмента в состав дуплексов при гибридизации. Одноцепочеч- [c.110]

    Денатурацию чаш е всего осуществляют кратковременным нагреванием раствора ДНК в 0,12 М Ка-фосфатном буфере до 97°, ренатурацию — охлаждением до так называемой критической температуры , которая на 20—25° ниже температуры плавления данной ДНК. Эту операцию, по аналогии с технологией обработки стали, называют отжигом . В отсутствие денатурирующих добавок температура отжига обычно близка к 60° в случае высокого содержания в ДНК ГЦ-пар она может быть заметно выше. Степень ренатурации пропорциональна произведению исходной концентрации раствора ДНК и времени отжига, которое обозначают символом ozf. Перед денатурацией ДНК необходимо тем или иным способом раздробить на фрагменты длиной 400—500 нуклеотидных пар. Без такого дробления не только сильно замедлится процесс ренатурации, но и благодаря наличию разбросанных по длине ДНК одинаковых (повторяющихся) последовательностей нуклеотидов может образоваться пространственная сетка молекул ДНК. [c.241]

    Исследование ренатурации ДНК с помощью сорбции на оксиапатите можно вести и в объеме. Например, аликвоты ДНК, рена-турирующей при температуре отжига, переводили в 0,156 М К-фосфатный буфер и смешивали с суспендированной в том же буфере кашицей оксиапатита, затем перемешивали в течение 15 мин и центрифугировали в настольной центрифуге. Выход однонитевой ДНК определяли в супернатанте, а всю остальную ДНК считали ренатурировавшей и сорбированной на оксиапатите. Для подавления неспецифической сорбции добавляли немеченную тимусную ДНК [Paetkau, Langman, 1975]. [c.242]

    А. Мармур и П. Доти Открыто явление ренатурации ДНК и установлены точность и специфичность реакции гибридизации нуклеиновых кислот [c.105]

    Использование колонок оксиапатита для исследования процессов ренатурации ДНК было подробно описано еще в 1974 г. [Britten et al., 1974]. В недавно опубликованной работе по кинетике ренатурации ДНК человека и мыши авторы предпочли К-фосфатный буфер и несколько иной подход к разделению нативной и денатурированной ДНК. Вначале они сорбировали на колонку оксиапатита всю ДНК в 0,03—0,05 М буфере при 50°, а затем вели элюцию линейным градиентом концентрации К-фосфатного буфера (0,03—0,4 М). Авторы утверждают, что разделение денатурированной и нативной ДНК в этом случае осуществляется более надежно [Soriano et al., 1981). [c.242]

    Для предотвращения частичной ренатурации ДНК во время инкубации с сефарозой было предложено вести посадку в 90%-ном формамиде. 20 мл Br N-активированной сефарозы суспендировали в 90%-ном водном растворе деионизованного с )ормамида, содержащем [c.388]

    Исследование процесса ренатурации барназы Ферштом и соавт. [31-33] (как и панкреатического трипсинового и ингибитора Крейтоном [29, 30]) подробно изложено во втором томе издания "Проблема белка" [2. Ч. III]. Анализ результатов привел к заключению, что первая попытка воссоздать на уровне отдельных аминокислотных остатков количественную картину всего пути свертывания белка, не содержащего дисульфидные связи, не достигла желаемой цели. Декларированный Ферштом порядок ренатурации не является неизбежным следствием объективного рассмотрения, а представляет собой один из многих правдоподобных вариантов. Принципиальное возражение заключается в несоответствии равновесной термодинамики и формальной кинетики - теоретической основы эмпирического подхода Фершта - сугубо неравновесному характеру процесса структурной самоорганизации белка. [c.88]

    Перед рассмотрением результатов, полученных здесь за последние годы, по-видимому, целесообразно обратить внимание на заведомую Обреченность исследований такого плана. Она обусловлена отсутствием у Проблемы множественности естественной основы и ее принадлежностью к нерешаемым в принципе псевдопроблемам. Столь неутешительный вывод Неизбежно следует из соображений общего порядка о невозможности ни по ходу биосинтеза белковой цепи, ни в процессе ее ренатурации, ни, тем более, при компьютерном поиске всех мыслимых конформационных вариантов. Сдерживает разработку подхода к априорному расчету механизма свертывания белка и его нативной структуры отнюдь не громоздкость задачи, ее математические и алгоритмические сложности. Проблема свертывания белка десятилетиями остается нерешенной исключительно из-за отсутствия понимания того, каким образом флуктуирующей белковой цепи при спонтанно протекающем случайно-поисковом Механизме удается избегать перебора всех конформационных состояний и ввертываться за считанные секунды. Выход из этой ситуации дает бифуркационная теория самоорганизации белка (см. разд. 2.1 и 16.3). А теперь обратимся к анализу литературы. [c.239]

    Найденные низкоэнергетические структуры двух шейпов тетрадекапептида представляют интерес потому, что в случае шейпа 62/465/2 форма основной цепи полностью совпадает с конформацией фрагмента Arg - ys в кристаллической структуре БПТИ. Более того, у самой выгодной конформации этого типа рассчитанные значения двугранных углов ф, V, со и X совпадают с экспериментальными. Вторая группа низко-энергетических конформаций шейпа 62/462/62/2 может реализоваться при свертывании белковой цепи в условиях in vitro в процессе ренатурации восстановленной молекулы БПТИ. Т. Крейтон [7] при исследовании промежуточных состояний, образующихся при свертывании денатурированной белковой цепи, обнаружил продукт с дисульфидной связью между ys и ys , которая отсутствует в нативной структуре БПТИ. В свете полученных результатов образование такой связи весьма вероятно. Расчет показал, что в самых предпочтительных по энергии конформациях 62/462/62/2 свободного тетрадекапептида Arg - ys остатки ys и ys оказываются сближенными (см. рис. IV.9). Таким образом, из найденных теоретически низкоэнергетических конформаций двух форм основной цепи [c.438]


Смотреть страницы где упоминается термин Ренатурация: [c.29]    [c.30]    [c.52]    [c.443]    [c.299]    [c.298]    [c.556]    [c.701]    [c.110]    [c.26]    [c.403]    [c.83]    [c.84]    [c.105]   
Смотреть главы в:

Новое в клонировании ДНК Методы -> Ренатурация


Химические приложения топологии и теории графов (1987) -- [ c.528 ]

Аминокислоты Пептиды Белки (1985) -- [ c.358 ]

Принципы структурной организации белков (1982) -- [ c.177 , c.182 ]

Биологическая химия Изд.3 (1998) -- [ c.47 , c.125 ]

Принципы структурной организации белков (1982) -- [ c.177 , c.182 ]

Химия и биология белков (1953) -- [ c.157 ]

Биофизическая химия Т.1 (1984) -- [ c.31 , c.164 , c.165 ]

Физическая Биохимия (1980) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Бактериофаг X кинетика ренатурации

Белки ренатурация

Белки сворачивание ренатурация гипотетические схемы

Белок денатурация-ренатурация

Геном, определение размера по кинетике ренатурации

ДНК, форма и ренатурация

Дезоксирибонуклеиновая кислота кинетика ренатурации

Дезоксирибонуклеиновые кислоты ренатурация

Денатурация и ренатурация РНК Гибридные спирали ДНК-РНК

Денатурация и ренатурация белков

Интерпретация двухфазных кинетических кривых ренатурации

Кинетика ренатурации ДНК

Кинетический анализ ренатурации

Кинетический путь ренатурации панкреатического трипсинового ингибитора

Кинетическое уравнение второго порядка для ренатурации двухцепочечных комплексов

Кривые ренатурации ДНК

Лизоцим реокисление и ренатурация восстановленной формы

Нуклеация число участков нуклеации при ренатурации ДНК

Нуклеиновые кислоты ренатурация

Палиндромные последовательности, кинетика ренатурации

Панкреатический денатурация-ренатурация

Повторы, обнаружение по кинетике ренатурации

Процессы, приводящие к восстановлению двухспиральной структуры (ренатурация)

РЕНАТУРАЦИЯ БЕЛКОВ, НЕ СОДЕРЖАЩИХ ДИСУЛЬФИДНЫЕ СВЯЗИ Е.М. Попов

Ренатурация ДНК применение кинетического анализа

Ренатурация ДНК скорость

Ренатурация РНКазы

Ренатурация антитела

Ренатурация белков

Ренатурация белков и конформация

Ренатурация гетеродуплексов

Ренатурация гибридизация ДНК

Ренатурация двойной спирали

Ренатурация комплементарных цепей

Ренатурация лизоцима

Ренатурация миоглобина

Рибонуклеаза денатурация и ренатурация

Рибонуклеаза кинетика ренатурации

Рибонуклеазы ренатурация

Сателлитная ДНК, кинетика ренатурации

Смысл константы скорости ренатурации

Факторы, влияющие на процесс ренатурации

Фрагментированная ДНК, кинетика ренатурации

Хроматография на гидроксиапатите и ренатурация ДНК

Шпильки влияние на кинетику ренатурации

Шпильки ренатурация

денатурация-ренатурация

спектры ренатурация



© 2025 chem21.info Реклама на сайте