Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вирус сложные

    Кристаллы получают обычно кристаллизацией из растворов и расплавов. В природе встречаются кристаллы различных размеров от больших до нескольких сотен килограммов (горный хрусталь, флюорит, полевой шпат) до небольших, составляющих доли грам ма (алмаз). Синтетически получают кристаллы самых разнообраз ных веществ, вплоть до таких сложных, как белки и даже вирусы [c.139]


    Методом электрофореза можно характеризовать фракционный состав сложных природных белков, дать характеристику энзимов, вирусов, бактерий, форменных элементов крови, латексов и др. [c.327]

    Велико значение коллоидной химии для биологии. Мышечные и нервные клетки, волокна, гены, вирусы, протоплазма, все это — коллоидные образования. Конечно, жизненные процессы весьма сложны и невозможно их свести к закономерностям коллоидной химии, но тот факт, что все живые системы являются высокодисперсными, делает изучение коллоидной химии необходимым и обязательным для биолога. Особый интерес представляет в настоящее время разработка моделей клеток, живых мембран, нервных волокон, действующих по законам коллоидной химии и все более усложняющихся, по мере приближения к живому объекту. [c.16]

    Успехи в изучении функций нуклеиновых кислот имеют большое значение для медицины. Еще совсем недавно мы мало знали, например, о таких возбудителях болезней, как вирусы. В настоящее время установлено, что они представляют собой нечто среднее между химическим соединением и живыми организмами. Каждая вирусная частица не содержит ничего, кроме нуклеиновой кислоты, соединенной с белком. Вирус обладает способностью освобождаться от молекулы белка, после чего его нуклеиновая кислота проникает внутрь животной или растительной клетки. Эта нуклеиновая кислота начинает активно синтезировать вирусный белок, подавляя синтез белков, необходимых клетке. В результате происходит резкое нарушение нормальной деятельности клеток—болезнь организма. Трудность борьбы с вирусными заболеваниями заключается в том, что чрезвычайно сложно прекратить деятельность нуклеиновой кислоты вируса внутри клетки, не нарушив деятельность нуклеиновых кислот самой клетки. Подробное изучение [c.455]

    У некоторых ретровирусов эта достаточно сложная картина еще более усложнена в вирусно.м геноме могут быть дополнительно закодированы белки, регулирующие эффективность транскрипции про-вируса. [c.315]

    Чтобы показать, как трудно определить, что такое живой организм,, рассмотрим простейшие виды материи, которая считается живой. Примером могут служить вирусы растений, например вирус кустистой карликовости томата, электронная микрофотография которого приведена на рис. 2.14. Эти вирусы в соответствующих условиях обладают способностью самовоспроизведения. Отдельная частица (индивидуальный организм) вируса кустистой карликовости томата, оказавшись на листе растения, может вызвать превращение значительной части вещества, составляющего клетки данного листа, в точно такие же, как и она сама, вирусные частицы. Эта способность к самовоспроизведению представляется, однако, единственной характерной чертой живого организма, которой обладает данный вирус. После того как вирусные частицы образовались, они не растут, не нуждаются в питательной среде и уже не участвуют в процессах обмена веществ. Насколько можно судить на основании данных, полученных при помощи электронной микроскопии и других методов исследования, отдельные частицы данного вируса совершенно идентичны между собой со временем они не изменяются — явление старения для них не наблюдается. Вирусные частицы не спо собны передвигаться и, по-видимому, не обладают свойством реагировать на внешние раздражители так, как это делают более сложные живые организмы. Однако они обладают свойством самовоспроизведения. [c.382]


    Углеводы присутствуют, причем в значительных количествах и в богатом ассортименте , во всех живых орн ганизмах (за исключением типичных вирусов, если виру сьт можно называть живыми организмами). Разнообразие их структуры поражает воображение, а огромные инфор мационные возможности заставляют думать, что столь сложные молекулярные образования были выращены эволюцией для выполнения по меньшей мере столь же сложных и тонких функций. [c.134]

    Условно-летальные мутанты сыграли чрезвычайно важную роль в изучении генетики бактериальных вирусов. Они были использованы также в качестве мощного метода при изучении сложных проблем, связанных с физиологией бактерий. Так, например, насколько сложно устроена система, необходимая бактерии для того, чтобы почувствовать наличие в среде питательного вещества и подплыть к нему Оказалось, что бактерии запрограммированы чувствовать градиенты концентрации химических аттрактантов и менять направление движения таким образом, чтобы оказываться в области с более высокой концентрацией [141, 143]. Было бы интересно узнать, какое количество белков необходимо для того, чтобы чувствовать аттрактант, передавать необходимый информационный сигнал жгутикам (дополнение 4-Б) и направлять движение последних, вызывая их вращение, приводящее либо к передвижению вперед, либо к беспорядочному подергиванию (гл. 16, разд. Б,7). [c.255]

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]

    Г. обнаружены в вирусах и фагах, микроорганизмах, грибах, растениях, в клетках и тканях животных. Их главная ф-ция-участие в катаболизме сложных углеводов они играют также важную роль в их биосинтезе (напр., крахмала, углеводных цепей гликопротеинов). Липидозы и др. болезни накопления обусловлены наследств, недостатком определенных Г. [c.576]

    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]

    По мере того, как в круг исследований втягиваются все более сложные белки — гемоглобин (мол вес. 66 000) химотрипсин (мол вес 22 000), пепсин (мол. вес 35 000) яичный альбумин и, наконец, вирусы, молекулярный вес которых достигает 10 степени, возникает вопрос, ограничивается ли строение этих белков только образованием громадных пептидных цепей, не образуются ли эти гигантские молекулы за счет каких-либо других связей не являются ли они ассоциата ми более простых образований возникающих за счет много численных полярных групп, со держащихся в молекуле белка К этому следует еще доба вить, что при обсуждении во проса о строении молекулы белка мы ограничивались так называемыми простыми белками, построенными из одних аминокислотных остатков. По мере накопления наших знаний круг простых белков становится все более ограниченным, первостепенное значение приобретают так называемые сложные белки. Они характеризуются тем, что собственно белковая молекула соединена [c.532]


    В приведенной ниже таблице охарактеризованы некоторые известные нам типы вирусов и ряд отдельных вирусов. Форма вирусных частиц обозначена буквами И (икосаэдр) С (спираль) и Сл (более сложная). Для некоторых спиральных вирусов и вирусов с более сложным строением приведена длина частиц в нм. Указана также длина молекулы нуклеиновой кислоты в тысячах оснований (для одноцепочечных ДНК или РНК) или в тысячах нуклеотидных пар (для двухцепочечных нуклеиновых кислот). Число генов, содержащихся в вирусной частице, иногда несколько превышает это число. [c.286]

    Крупные вирусы диаметром 80—100 нм, имеющие по 8— 10 выступов в вершинах икосаэдра, вызывают грипп, свинку и некоторые другие острые инфекции. Внутренняя структура таких вирусов, по-видимому, очень сложна. РНК составляет только 1 % от массы всего вируса и состоит из нескольких фрагментов относительно небольшого молекулярного веса ( 0,5-10б). [c.288]

    Лучше всего изучен спиральный РНК-содержащий вирус табачной мозаики (разд. Г.2)я. Более сложное строение имеют вирусы, у которых вирионы напоминают по форме пулю примером может служить вирус бешенства — его диаметр равен 65—90 нм, а длина— 120—500 нм. Нуклеопротеид внутри частицы у таких вирусов уложен в виде спирали. [c.289]

    Методами генной инженерии удается объединить в одном геноме антигены многих вирусов, например, гриппа и бешенства, герпеса и гепатита В. Клетки, зараженные одним вирусом, приобретают временный иммунитет к заражению другим вирусом - такое явление называется интерференцией. Это сложный процесс, определяемый многими факторами, в том числе и синтезом в клетке специального белка - интерферона. До сих пор интерфероны выделяли из крови животных или из донорской крови, что являлось сложным и дорогим методом. Генноинженерный способ получения интерферона (выделение его гена и клонирование в плазмидных векторах) позволил практически решить проблему достаточного обеспечения интерфероном больных гриппом даже во время эпидемий. [c.62]

    Современное развитие химических и биологических наук истребовало более глубокого проникновения в существо изучаемых процессов, детального анализа химического состава разнообразных смесей и биологических объектов. Кроме того, для химического и биотехнологического ироизводства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев ири оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Рещение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы — от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хроматографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций ио различным вопросам теории и применения метода, общее же их число в несколько раз больше. [c.5]

    Для вирусов характерны субмикроскопические размеры, способность жить и размножаться только в живых клетках и невозможность культивирования их на искусственных питательных средах. Вирусы серологически не родственны своим хозяевам и ин-фекционны они вызывают патологические изменения в определенных тканях и умерщвляют своего хозяина. Вирусы могут долго существовать в латентной, покоящейся стадии. Они не имеют клеточной структуры, а также отчетливо выраженного обмена веществ. У вирусов сложная морфология, первичные их частицы включают молекулы протеина и нуклеиновых кислот. Имеются также определенные всегда последовательно повторяющиеся формы. Вирусы обладают способностью размножаться в логарифмической пропорции за счет клетки хозяина и способны к мутациям. [c.64]

    Белки (протеины) представляют собой сложнейшие высокомолекулярные соединения. Это основное вещество, которое входит в состав протоплазмы клеток мышц, хрящей, сухожилий и кожи животных и человека. Они содержатся также в шелке, молоке (казеии) и растениях, особенно в зернах пшеницы, семенах бобовых (растительные белки). Все известные энзимы, многие гормоны и вирусы также состоят из белков, К белкам, применяемым в технике, следует отнести желатин, казеин, яичный альбумин. [c.418]

    На явлении рассеяния основаны экспериментальные методы получения спектров плотности в структурном анализе. Эти методы применимы к определению функций распределения плотности независимо от агрегатного состояния вещества. В газе нет корреляции в расположении частиц, поэтому складываются интенсивности волн, рассеянных отдельными частицами. Из картины рассеяния, в случае одноатомного газа, путем фурье-преобразова-ния находят распределение электронной плотности в атомах. Для многоатомного газа с помощью модельных расчетов определяют строение газовых молекул, в растворах изучают форму и размеры макромолекул, частиц вирусов и т. д. В жидкостях и аморфных телах существует корреляция в расположении ближайших соседей. Анализ картин рассеяния в этом случае позволяет определить ближний порядок. В кристаллах, как следствие периодичности структуры, имеется как ближний, так и дальний порядок. Дифракционная картина, получаемая от кристалла, является по содержащейся в ней информации наиболее богатой. Из этой картины, даже для таких сложных объектов, как биополимеры, можно определить координаты всех атомов кристалла [8]. [c.14]

    Исключительно важное значение химия поверхности адсорбентов и носителей имеет в газовой и жидкостной хроматографии для анализа сложных смесей, препаративного выделения чистых веществ и управления технологическими процессами. Химия поверхности играет важную роль и в процессах, протекающих в биологических системах. К ним относится, в частности, взаимодействие биологически активных веществ, в том числе лекарственных препаратов, с рецепторами — местами их фиксации в организме. Изучение модифицирования поверхности необходимо для решения вопросов совместимости искусственных материалов с биологическими. Химическое модифицирование адсорбентов применяется при разработке эффективных методов вывода из крови разного рода токсинов (гемосорбция). Прививка к поверхности крупнопористых адсорбентов и носителей соединений с определенными химическими свойствами необходима для иммобилизации ферментов, их хроматографического выделения и очистки, а также для иммобилизации клеток. Иммобилизованные ферменты и клетки эффективно используются в промышленном биокатализе, обеспечивая высокую избирательность сложных реакций в мягких условиях. Очистка и концентрирование вирусов гриппа, ящура, клещевого энцефалита и других для получения эффективных вакцин требует применения крупнопористых адсорбентов с химически модифицированной поверхностью. [c.6]

    На молекулах репликативной формы ДНК происходит синтез не только (+)цепей ДНК, но и вирус-специфических мРНК- Следует сказать, что синтез мРН К должен предшествовать появлению новых молекул (+)цепей ДНК, так как без вирус-специфических мРНК в зараженной клетке не может появиться белок А. Трансляция фаговых мРНК приводит к накоплению вирус-специфических белков, в том числе и структурных, которые — при достаточной концентрации — начинают превращаться в сложные структуры— предшественники вирусного капсида. Генерируемые на этой стадии (+)кольца в результате специфических взаимодействий с белками фага вовлекаются в процесс сборки вириона. Тем самым предотвращается ставший уже ненужным переход -Ь)цепей в репликативную фор.му. [c.274]

    ГЕН, участок молекулы ДНК (у нек-рых вирусов — РНК), в к-ром закодирована информация, обеспечивающая развитие определ. признака (св-ва) у данного организма и его передачу в ряду поколений. Участки нуклеиновой к-ты, кодирующие аминокислотную последовательность белков нли последовательность оснований транспортных и рибо-сомных РНК, наз. структурными Г. Последние вместе с необходимыми для их функцион. выражения регуляторными участками объединяются в более сложные генетич. еднинцы — опероны. Многие Г. высших организмов имеют прерывистое строение кодирующие части гена (зкзоны) чередуются с некодирую1цими вставками (интронами). в Стен т Г. С., Молекулярная -енетыка, пер. с англ.. М., 1974, [c.125]

    Большая часть наших знаний в области биохимической генетики была получена в результате исследования бактериофагов. Интенсивное изучение Т-четных фагов Т2, Т4 и Тб было начато еще в 1938 г. Максом Дельбруком и его сотрудниками. Хотя размеры исследованных ими вирусов малы, тем не менее оказалось, что они относятся к числу наиболее сложно устроенных из известных вирусов (дополнение 4-Д). Генетической информации, содержащейся в одной линейной молекуле ДНК, которая в случае фага Т4 содержит 2-10 пар оснований, достаточно для кодирования примерно 200 генов. Удалось установить положение 60 из этих генов на генетической карте. Ниже мы рассмотрим вкратце метод, при помощи которого это было сделано. [c.248]

    Интерпретация карт электронной плотности молекулы значительно облегчается при знании аминокислотной последовательности. Однако далеко не каждый Б. удается получить в кристаллич. состоянии. Необходимое условие кристаллизации-сохранение нативной конформации, к-рая часто реализуется лишь в условиях, приближенных к физиологическим. В частности. Б., входящие в состав нуклео-протеидных комплексов (рибосома, вирусы хорошо кристаллизуются только в составе таких комплексоа С помощью обычного рентгеновского излучения проводить анализ таких гигантских образований сложно. В этих случаях используют синхротронное рентгеновское излучение, интенсивность к-рого может быть на два порядка выше. Вследствие этого резко сокращается время эксперимента по регистрации дифракц. отражений, а также снижается кол-во исследуемого в-ва. Ряд мембранных Б. кристаллизуется в условиях нативного липидного окружения с образованием т. наз. двухмерных кристаллов, представляющих из себя регулярно упакованные молекулы Б. в бислойной липидной мембране. При изучении двухмерных кристаллов используют электронную микроскопию и электронографию. [c.252]

    Г. человека сосгоит из 23 хромосом и содержит примерно 3 10 нуклеотидных пар. Г. бактерий представлен единств, кольцеюй хромосомой, связанной с клеточной мембраной. Строение ее намного проще, чем у высших организмов. Так, ДНК генома ишечной палочки состоит из 3,8-10 нуклеотидных пар. Г. наиб, примитивных вирусов состоит из молекулы ДНК или (в нек-рых случаях) РНК, имеющих линейную или кольцевую форму. У более сложных вирусов обнаруживаются черты структурной организации, характерные для хромосом высших организмов. [c.519]

    Фотосинтез с при использовании hlorella vulgaris дает с высокими выходами аминокислоты и жирные кислоты меченые сахара синтезируются в листьях бобов, свеклы или табака [4], причем изотопное разбавление относительно невелико. Несмотря на очень низкие выходы, фотосинтез был применен для получения некоторых меченых сложных веществ, например колхицина, дигитоксина, морфина, никотина, пиретри-на и вируса табачной мозаики [24]. [c.683]

    Наиболее интересной и важной группой из числа сложных белков являются нуклеопротеиды, в них белок соединен с нуклеиновой кислотой. В отличие от других сложных белков нуклеопротеиды состоят из сравнительно простого и низкомолекулярного белка основного характера — протамина или гистона, и высокомолекулярной простетической группы — нуклеиновой кислоты. Нуклеопротеиды входят в состав всех клеток живого организма, являются важной частью хромозом и т. д. К этому классу соединений относятся и молекулы ]-иганты — вирусы, инициаторы многих инфекционных заболеваний, например, полиомиелита. [c.533]

    Успешно исследуется структура значительно более сложного соеди нения, чем гемоглойин и миоглобин. Речь идет о вирусе табачной мозаики, для которого, удалось определить пространственное расположение белковых субъединиц и рибуноклеиновой кислогы. [c.546]

    Аналогично тому как аминокислоты, сахара и нуклеотиды служат строительными блоками для белков, полисахаридов и нуклеиновых кислот, так и сами эти макромолекулы в свою очередь являются единицами, из которых собираются более сложные структуры. Волокна, мик-ротрубочки, оболочки вирусов и небольшие симметричные группы субъединиц в олигомерных ферментах — все это варианты строго упорядоченной упаковки макромолекул (которую иногда называют четвертичной структурой). Рассмотрим сначала наиболее простой случай агрегации идентичных белковых субъединиц. Известно, что, хотя форма многих белков близка к сферической, тем не менее они не совсем симметричны. На приведенных ниже рисунках это их свойство несколько преувеличено, чтобы более четко проиллюстрировать общие принципы упаковки. [c.270]

    Многие ферменты, чехлы вирусов и более сложные молекулярные структуры построены из протомерав двух или большего числа типов. Наиболее детально изучен гемоглобин — тетрамерный белок (02 2), построенный из двух хотя и похожих, но не идентичных субъединиц, аир (обе имеют мол. вес, равный 16100). Аминокислотные последовательности субъединиц весьма сильно различаются, и тем не менее укладка полипептидных цепей в обеих субъединицах гемоглобина почти одинакова (и весьма сходна с укладкой полипептидной цепи в мономерном миоглобине) [56]. Если бы не эти различия, молекула гемоглобина была бы высокосимметричной с указанным на рис. 4-9, В типом взаимодействий и тремя осями симметрии 2-го порядка. Принято говорить, что молекула гемоглобина имеет одну истинную ось симметрии 2-го порядка и две оси псевдо-2-го порядка. В ней имеется два набора чисто изологических взаимодействий (между двумя а-субъеди-ницами и двумя р-субъединицами) и две пары несимметричных взаимодействий (между а- и р-субъединицами). На прекрасных рисунках Дикерсона и Гейса [57] ясно видна почти симметричная ориентация различных участков полипептидной цепи. [c.296]

    От обычных белков, состоящих исключительно из протеиногенных аминокислот, следует отличать сложные белки, называемые также конъюгированными белками или протеидами. Это вещества, содержащие помимо белковой части небелковый органический или неорганический компонент, необходимый для функционирования, могущий быть связанным с полипептидной цепью ковалентно, гетерополярно или координационно и вместе с аминокислотами присутствующий в гидролизате. Важнейшие представители сложных белков гликопроТеины (простетическая группа — нейтральные сахара (галактоза, манноза, фукоза), аминосахара (N-aцeтилглюкoзa-мин, N-aцeтилгaлaктoэaмин) или кислые производные моносахаридов (уро-новые или сиаловые кислоты)), липопротеины, содержащие триглицериды, фосфолипиды и холестерин, металлопротеины с ионом металла, связанным ионной или координационной связью, фосфопротеины, связанные эфирной связью через остаток серина или треонина с фосфорной кислотой, нуклеопротеины, ассоциирующиеся с нуклеиновыми кислотами в рибосомах или вирусах, а также хромопротеины, содержащие в качестве просте-тической группы окрашенный компонент. Обзор структур важнейших белков см. в разд. 3.8. [c.345]

    Из сказанного можно сделать вполне онределенный вывод в настоящее время требуется детальный химический анализ разнообразных смесей и биологических объектов. Решение ЭТОЙ задачи невозможно без ирименения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в но-следнее десятилетие, этот метод открыл возможность разделения смесей, содержащих десятки и СОТНИ комиоиеитов, их количественный и качественный анализ, иренаративное выделение индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой разной природы, от нефти и газов атмосферы до белков и даже вирусов. [c.1]

    Специфический протеолиз — удобный процесс для образования сложных белковых структур. Во многих случаях белки модифицируются путем расщепления одной или нескольких пептидных связей. Для обозначения этого типа катализируемых ферментами реакций, которые играют доминирующую роль во многих физиологических процессах [137—139], используются термины ограниченный протеолиз или специфический протеолиз (табл. 4.2). Хорошо известными примерами специфического расщепления полипептидов являются активация предшественников пищеварительных ферментов, морфогенетические процессы в бактериальных вирусах и каскадные процессы коагуляции и комплементного действия крови [138, 140]. Недавно было показано, что механизмы посттрансля-ционного расщепления имеют место также при образовании таких разных белков, как инсулин, коллаген и специфичные белки вирусов. Кроме того, высокоспецифичное протеолитическое расщепление ферментов важно при инактивации и активации специфических внутриклеточных ферментов (табл. 4.2). [c.72]


Смотреть страницы где упоминается термин Вирус сложные: [c.280]    [c.231]    [c.268]    [c.626]    [c.304]    [c.332]    [c.384]    [c.206]    [c.247]    [c.518]    [c.24]    [c.239]    [c.249]    [c.274]   
Химия и биология вирусов (1972) -- [ c.181 , c.183 ]




ПОИСК







© 2025 chem21.info Реклама на сайте