Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия электронного парамагнитного

    СПЕКТРОСКОПИЯ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА  [c.5]

    Спектроскопия электронного парамагнитного резонанса [c.7]

    Если атом или молекула имеет один неспаренный электрон, магнитный момент частицы равен магнитному моменту электрона 1= /Т. Измерение парамагнитной восприимчивости позволяет обнаружить свободные радикалы, установить число неспаренных электронов в частице и т. п. Особенно большое значение для подобных исследований приобрел метод спектроскопии электронного парамагнитного резонанса (ЭПР). [c.43]


    Наиболее детально развитие разрушения изучено прямыми структурными методами в твердых полимерах и главным образом в волокнах (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, ядерный магнитный резонанс, рентгеновская дифракция на малые и большие углы, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография и др.) [61 11.27]. [c.324]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Для изучения физико-химических процессов, протекающих в твердых, жидких и газообразных веществах, все шире используется спектроскопия электронного парамагнитного резонанса (ЭПР) и ядерного магнитного резонанса (ЯМР). Наиболее распространен ядерный магнитный резонанс на протонах — протонный магнитный резонанс (ПМР). [c.63]

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    При экспериментальном определении резонансного поглощения можно идти двумя путями поддерживая постоянным магнитное поле, варьировать частоту создаваемого переменного поля или выполнять условия резонанса [уравнение (5.4.5)], изменяя при постоянной частоте магнитное поле. Проще реализовать второй метод, так как стабилизировать частоту легче, чем магнитное поле. Кроме того, изменять частоту в более широком интервале Е спектроскопии электронного парамагнитного резонанса технически очень трудно. [c.252]

    Спектроскопия электронного парамагнитного [c.264]

    Спектроскопия ядер-ного магнитного резонанса (ЯМР), спектроскопия электронного парамагнитного резонанса (ЭПР) [c.12]

    Спектроскопия электронного парамагнитного резонанса Спектроскопия ядерно-10 магнитного резонанса [c.18]

    IX. СПЕКТРОСКОПИЯ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО [c.350]

    При любом движении электрического заряда возникает магнитное-поле. Не представляет исключения и спин электрона — электрон создает магнитное поле, соответствующее магнитному моменту, который должен быть у вращающегося отрицательного заряда электричества. Вращающийся электрон можно представить себе как крошечный магнит, который может ориентироваться в магнитном поле таким образом, что составляющая момента количества движения, имеющая направление вдоль поля, равна -Ьцв или —цв, где цв —магнетон Бора = 0,927- 10- Дж-Т- (джоуль тесла- = 10 эрг - гаусс" ). Спин электрона в магнитном поле может измениться и приобрести отрицательную ориентацию вместо положительной, если электрон поглотит микроволновое излучение, имеющее соответствующую частоту. На этом основан метод электронно-спиновой резонансной спектроскопии (электронного парамагнитного резонанса, ЭПР) после 1945 г. этим методом получена огромная информация об электронных структурах. [c.111]

    Методы обнаружения и анализа. Осн. специфич. методы обнаружения и исследования строения Р. с. основаны на использовании спектроскопии электронного парамагнитного резонанса. Спектры ЭПР дают информацию о хим. строении Р. с., степени делокализации неспаренного электрона, о распределении спиновой плотности по разл. атомам частицы. Методом ЭПР можно обнаружить радикалы в концентрации 10 моль/л. [c.156]

    Спектрометрия кругового дихроизма Спектроскопия поглощения рентгеновских лучей Спектроскопия ядерного магнитного резонанса (ЯМР) Спектроскопия электронного парамагнитного (спинового) резонанса (ЭПР) [c.151]

    Спектроскопия электронного парамагнитного резонанса (ЭПР), известная также под названием спектроскопии электронного спинового резонанса (ЭСР), представляет собой метод, регистрирующий переходы между спиновыми уровнями неспаренных электронов молекулы во внешнем магнитном поле. ЭПР (ЭСР)-спектроскопия имеет дело с поглощением микроволновой энергии электромагнитного поля образцом, помещенным в такое поле. Поглощение представляет собой функцию неспаренных электронов, содержащихся в молекуле. Спектр ЭПР (ЭСР) — это зависимость поглощения микроволновой энергии от внешнего магнитного поля. [c.340]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]



Смотреть страницы где упоминается термин Спектроскопия электронного парамагнитного: [c.31]    [c.32]    [c.450]    [c.27]   
Теоретические основы аналитической химии 1980 (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия электронная

Спектроскопия электронного парамагнитного резонанса (ЭПР-спектроскопия)

Спектроскопия электронного парамагнитного резонанса (метод ЭПР)

Спектроскопия электронного парамагнитного резонанса ЭПР

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи калибровка развертки поля

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи линии интенсивность

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи магнитный момент

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи метод нормирования

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи насыщение сигнала

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи неспаренных спинов

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи определение абсолютного количества

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи приготовление образцов

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи принцип неопределенности

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи релаксация

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи сверхтонкое взаимодействие

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи спектрометры

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи спектры

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи спин-решеточная

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи спин-спиновая

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи спиновое квантовое число

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи спиновые аддукты

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи стабилизация свободных радикало

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи угловой момент орбитальный

Электронный парамагнитный



© 2025 chem21.info Реклама на сайте