Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронно-спиновая резонансная спектроскопия ЭПР

    При любом движении электрического заряда возникает магнитное-поле. Не представляет исключения и спин электрона — электрон создает магнитное поле, соответствующее магнитному моменту, который должен быть у вращающегося отрицательного заряда электричества. Вращающийся электрон можно представить себе как крошечный магнит, который может ориентироваться в магнитном поле таким образом, что составляющая момента количества движения, имеющая направление вдоль поля, равна -Ьцв или —цв, где цв —магнетон Бора = 0,927- 10- Дж-Т- (джоуль тесла- = 10 эрг - гаусс" ). Спин электрона в магнитном поле может измениться и приобрести отрицательную ориентацию вместо положительной, если электрон поглотит микроволновое излучение, имеющее соответствующую частоту. На этом основан метод электронно-спиновой резонансной спектроскопии (электронного парамагнитного резонанса, ЭПР) после 1945 г. этим методом получена огромная информация об электронных структурах. [c.111]


    Атомные ядра и электроны обладают магнитными моментами. Это свойство используют в технике магнитной резонансной спектроскопии наложение магнитного поля на ядра и электроны приводит к расщеплению квантовых состояний магнитного момента на ряд энергетических уровней (расщепление Зеемана). Относительно направления приложенного магнитного поля магнитный момент ориентируется в определенных направлениях, отличающихся по магнитной энергии. Наряду с магнитным моментом, ядра и электроны имеют спиновый момент количества движения. Компонент момента количества движения вдоль направления приложенного магнитного поля является целым или полуцелым числом, кратным основной единице момента количества движения Ь (константа Планка, деленная на 2ц). Ядро (или система электронов) со спином / (или 5) могут иметь только 2/ -Ь 1 различных ориентаций в постоянном магнитном поле и, следовательно, 2/ +1 состояний с различной магнитной энергией. Переходы магнитного момента между этими состояниями, сопровождающиеся резонансным поглощением магнитной энергии, происходят под действием излучения соответствующей частоты и поляризации. Наблюдая интенсивности и частоты резонансного поглощения в исследуемом материале, можно установить детали окружения ядер и электронов. Так как большинство веществ, представляющих интерес в гетерогенном катализе, является твердыми телами, в последующем изложении будет обращено особое внимание на магнитный резонанс в твердых телах. [c.9]

    С другой стороны, р-электроны атомов и соответствующие тг-электроны молекул, имеющие квантовое число 1=1, обладают и орбитальными и спиновыми моментами. Но результирующий магнитный момент равен нулю не только у систем с двумя 5 - и шестью /1-электронами, образующими нормальный стабильный октет, как в структурах инертных газов, но также у систем с двумя 5- и двумя р-электронами, которые в спектроскопии обозначаются как зРо. Такие системы имеются у атомов углерода, олова и свинца. С другой стороны, системы, содержащие четыре р-электрона, как в атомах кислорода и серы, могут обладать результирующим моментом. Одно из нормальных спектроскопических состояний атома кислорода, а именно, состояние Рг соответствует атому, имеющему магнитный момент. С химической точки зрения существенно, что те атомы и молекулы, которые содержат нечетное число электронов, имеют некомпенсированный электронный спин и поэтому должны обладать результирующим магнитным моментом. Возможные значения магнитного момента любой такой системы строго ограничены они определяются квантовыми законами. Резонансные взаимодействия между электронными группами и обменная энергия образования связей не влияют на эти значения. Как будет показано на стр. 34-41, только те вещества, которые обладают постоянными магнитными моментами, обнаруживают парамагнитные свойства. Поэтому для всех органических соединений и других производ- ных легких элементов парамагнетизм можно рассматривать как физическое свойство, являющееся индикатором на свободные [c.30]


    В резонансном поглощении или резонансном рассеянии участвуют два состояния ядра. Каждое состояние взаимодействует с внеядерными полями посредством своих электрического монопольного, [магнитного [дипольного. и электрического квадрупольного моментов. Это взаимодействие может быть описано гамильтонианом, содержащим большое число координат. Даже если предположить, что ядро представляет собой твердое тело, мы сталкиваемся с вычислительной проблемой, решение которой находится вне возможностей современной теории, и для того, чтобы сделать какие-либо предсказания, необходимы аппроксимации. Очень полезным оказывается метод разделения переменных. Процедура состоит в сведении задачи к решению уравнения с угловыми переменными, которые описываются операторами угловых моментов, и уравнения с радиальными переменными, которые практически трактуются как полуэмпирические константы. Эта процедура известна как формализм спинового гамильтониана [1, 2]. Она с успехом применяется для интерпретации сверхтонкой структуры спектров в твердых телах. В рамках этого формализма имеется угловой момент 5, называемый эффективным спином и связанный с электронными координатами. Для свободных ионов или ионных решеток, в которых эффекты кристаллического поля очень слабы , 5 представляет собой полный угловой момент J. Однако для наиболее тяжелых атомов, доступных мессбауэровской спектроскопии, вырождение, связанное с J, снимается (частично или полностью) путем взаимодействия с лигандами (обычно через ковалентные связи), и основное состояние, как правило, является синглетом или дублетом. Квантовомеханическое описание этого основного состояния как линейной комбинации базисных состояний в 1 /, Лi )- или [c.399]

    Спектроскопия ядерного гамма-резонанса (мессбауэровская спектроскопия) позволяет обнаружить слабые возмущения энергетических уровней ядер железа окружающими электронами. Этот эффект представляет собой явление испускания или поглощения мягкого у-излучения без отдачи ядер. Интересующий нас ядерный переход с энергией 14,36 кэВ -происходит между состояниями / = % и / = 1/2 мессбауэровского изотопа Те, где I — ядер-ное спиновое квантовое число. Для регистрации спектров Месс-бауэра обычно требуется 1—2 мкмоля Те, содержание которого в природном железе составляет 2,19%. Для белка с молекулярным весом 50 ООО, который связывает 1 атом железа на молекулу, и в отсутствие изотопного обогащения это соответствует весу образца 2,5 г. Рассматриваемые здесь многоядерные белки содержат гораздо больше железа и вполне подходят для исследования методом ядерной гамма-резонансной спектроскопии. Широко исследуются четыре возможных типа взаимодействия между ядром Те и его электронным окружением изомерный сдвиг, квадрупольное расщепление, ядерные магнитные сверхтонкие взаимодействия, ядерные зеемановские взаимодействия. Применение мессбауэровской спектроскопии для изучения железосодержащих белков, относящихся к гемовым и железосерным, обсуждается в опубликованном недавно обзоре [78]. [c.347]

    Вопросы экспериментального определения моментов обсуждаются в [143—146]. В [146] даны формулы, учитывающие влияние на второй момент я-электронных радикалов, конечной ширины линии, ее сателлитов, углерода в естественной концентрации, анизотропии g-фактора и спиновой плотности я-электронов. Форма ЯМР-линии протонов в поликристаллическом ароматическом радикале вычислена в [147]. Приложение метода Ван-Флека к случаю квадрупольного резонанса описано в [148]. Форма линии спада свободной индукции в-жесткой решетке обсуждается в [149]. Этот метод широко используется для интерпретации ЯМР-спек-тров твердых тел, жидкостей и газов. Детальное изложение этого метода можно найти в книгах по ЯМР-спектроскопии [54,150—152]. Связь между формами линий, полученных в экспериментах по акустическому резонансному поглощению и в обычном ЭПР-эксперименте, обсуждается в [153—155]. [c.472]

    Резонансная частота, соответствующая спиновым переходам невесомых электронов, при том же магнитном поле превосходит частоту переходов атомных ядер почти в той же степени, в которой электрон легче протона. Правда, для одинокого электрона величина, соответствующая химическому сдвигу (в спектроскопии ЭПР ее называют -фактором), довольно слабо меняется с изменением химического строения радикала, и в большинстве случаев -фактор имеет одно и то же значение. Зато чувствительность среднего спектрометра соответствует ЯМР невиданного класса ведь его рабочая [c.331]

    Спектры атомов. При сообщении атому энергии изменяется по крайней мере одно квантовое число. Появляющиеся при этом сигналы относятся к видимой (800—200 нм) и рентгеновской (1 —10 А) областям спектра. В рентгеновской области спектра для аналитических целей используют сигналы, связанные с изменением главного квантового числа п. Интересные для аналитиков оптические спектры связаны в основном с изменением побочного квантового числа I (наряду с изменением и или т ). Ввиду большего разнообразия переходов оптические спектры имеют значительно большее число линий, чем рентгеновские. Если вырождение спинового момента электрона /Пз снимается внешним магнитным полем, то становятся возможными энергетические переходы с изменением т , дающие сигналы в микроволновой области (10 —10 Гц). Эти сигналы образуют спектр электронного парамагнитного резонанса (ЭПР). Атомное ядро подобно электрону может обладать собственным вращательным моменгом, ядерным спином. Воздействие внешнего магнитного поля также снимает его вырождение, что делает возможным энергетические переходы в области радиочастот (10 —10 Гц). Получающиеся при этом спектры называют спектрами ядерного магнитного резонанса (ЯМР). Оба метода, ЭПР и ЯМР, относят к резонансной магнитной спектроскопии [c.177]


    Метод ЭПР-спектроскопии чрезвычайно чувствителен при обнаружении свободных радикалов. В благоприятных условиях легко может быть зафиксировано наличие свободных радикалов при их концентрации, составляющей 10"1 М. Идентификацию свободных радикалов простых углеводородов часто удается осуществить путем анализа тонкой структуры их спектров, возникающей при спин-спиновом расщеплении на протонах, расположенных достаточно близко к центрам, на которых распределен неспаренный электрон. Большое число водородов в трифенилметильном радикале и их расположение в орто-, мета- и пара-положениях приводит к чрезвычайно сложному ЭПР-спектру, в котором обнаруживается по крайней мере 21 линия. Другие радикалы могут дать более простые спектры. Спектр метильных радикалов, генерируемых в иодистом метиле рентгеновским излучением при —196 °С, содержит 4 резонансные линии в соответствии с ожидаемым для взаимодействия электрона с п+1 протонами (см. 1, разд. 2-6,В). [c.365]

    При резонансной частоте магнитные моменты ядер переориентируются. Так как переходы с более высокого на более низкий энергетический уровень происходят с той же вероятностью, что и с более низкого на более высокий, то в результате равных заселенностей двух энергетических уровней энергия поглощения будет равна нулю. Однако, так как разность между энергетическими уровнями очень мала (приблизительно 10- кал), распределение ядер на более низком и более высоком уровнях сильно зависит от температуры. При абсолютном нуле все ядра находятся на более низком уровне. В интервале температур, обычно используемых для измерения (О—25Х), в результате теплового движения многие ядра переходят на более высокий уровень однако на более низком уровне все еще остается небольшой избыток ядер (1 на 10 ). Когда приложено радиочастотное излучение, имеющее резонансную частоту, энергия поглощается, и заселенности более высокого и более низкого энергетических состояний выравниваются. Как только они стали равными, больше нельзя обнаружить поглощения. Чтобы поглощение было непрерывным (как и происходит на самом деле), должно каким-то образом восстанавливаться первоначальное неравное распределение. Любой процесс, при котором происходит возвращение системы к начальному состоянию, обозначается общим термином релаксация . В оптической спектроскопии (имеющей дело с электронными и колебательными уровнями) статус-кво восстанавливается либо за счет потери поглощенной энергии в виде тепла (путем столкновений молекул), либо за счет флуоресценции. В случае ЯМР имеется два основных вида релаксационных процессов спин-решеточная, ила продольная, релаксация и спин-спиновая, или поперечная, релаксация. Эти сложные процессы [c.492]

    В вольтамперометрии с линейной разверткой напряжение изме няется между двумя предельными значениями с постоянной скоростью. Это изменение может быть однократным или циклическим в виде тре угольных волн, причем проводятся измерения соответствующего то ка (см. метод 7, табл. 2). Этот метод часто используется для получе ния количественных или полуколичественных представлений об электродной системе. По вольтамперометрическим кривым можно приблизительно проверить обратимость электродной системы, выяснить, имеет ли место многостадийность, распознать фарадеевский и нефа-радеевский адсорбционно-десорбщонный процессы и с помощью циклической вольтамперометрии определить электроактивные промежуточные соединения [201, 290 общий обзор вольтамперометрии с линейной разверткой содержится в 123, 248, 289, 490, 576]. Вольтамперометрия с линейной разверткой является особенно мощным средством для исследования сложных электродных процессов с участием органических соединений, если она применяется совместно с другими методами, такими, как оптическая абсорбционная спектроскопия [225, 231, 232] и электронно-спиновая резонансная спектроскопия [114, 309, 450]. Используя для контроля спектроскопию при зеркальном отражении, с помощью вольтамперометрии с линейной разверткой также легко изучать адсорбцию различных анионов и образование монослоев окислов или атомов чужеродных металлов [556]. [c.208]

    Основными параметрами ЯМР спектроскопии, позволяющей исследовать структуру органических соединений, являются химический сдвиг б и константа спни-спинового взаимодействия . Для ядер с одинаковым магнитным моментом, напрнмер для атомов водорода, при постоянном значении напряженности поля должна быть одна и та же резонансная частота. Однако электронная оболочка, экранирующая ядро от внешнего магнитного поля (Яо), сильно его меняет, создавая вторичное магнитное поле направленное против Яо. [c.88]

    Ароматичность порфиринового макроцикла широко изучалась методом ЯМР-спектроскопии [2]. Кольцевой ток, обусловленный делокализацией в порфириновой системе, использовался для исследования агрегации и большого числа других явлений. Вследствие деэкранирования жезо-протонов их сигналы появляются в спектре ПМР приблизительно при 10 млн (б) (химический сдвиг протонов бензола 7,2 млн ), а сигнал экранированного протона группы N—Н между —2 и —5 млн . Измерение химических сдвигов в ЯМР спектрах Н и С осложняется наличием концентрационной зависимости, обусловленной главным образом образованием слоев молекул в растворе [2]. При сближении молекул порфирина в растворе кольцевой ток одной из них вызывает сдвиг в сторону сильных полей линий в протонном и углеродном спектре заместителей другой молекулы. Анализ таких сдвигов используют для определения геометрической структуры этих димеров или более высоких агрегатов (в растворе). Гораздо чаще ЯМР-исследо-вание применяют для идентификации боковых цепей и определения изомерной чистоты порфиринов. При решении этих задач с большим успехом применялись сдвигающие реагенты 17]. Были исследованы также парамагнитные ЯМР-спектры гемов и гемо-протеинов [8]. В случае низкоспиновых цианоферригемов или гемопротеинов [8] неспаренный электрон вызывает чрезвычайно сильный сдвиг резонансных линий порфирина, которые таким образом далеко отходят от сигналов растворителя или протеиновых остатков. Величина смещения непосредственно зависит от спиновой плотности в геме, поэтому в ней отражаются малейшие возмущения, происходящие в физиологических условиях, когда гемо-протеин выполняет свою биологическую функцию, [c.393]

    В последние годы стало возможным изучать химические и физические свойства адсорбированных фаз и структуру поверхности твердых тел, используя относительно новые области спектроскопии, которые имеют дело со спектрами, лежащими в радиочастотном диапазоне электромагнитного спектра, обычно в области частот выше 10 цикл-сек (1 Мгц). Магнитные резонансные методы основаны на том, что атомные ядра и электроны обладают магнитными моментами и спиновыми моментами количества движения. При воздействии на ядра и электроны магнитного поля происходит зеема-новское расщепление квантовых состояний магнитного момента на ряд энергетических уровней. [c.118]

    Аналогичные эффекты существуют и в ЭПР. Например, даже для электрона в атоме водорода резонансная частота не равна точно теоретическому значению hv = 2,00232рЯ, соответствующему свободному электрону. В ЯМР обычно выбирают линию, для которой Як является только свойством самих ядер, а любые поправки к зее-мановской энергии интерпретируются как эффекты экранирования [аналогично тому, как рассуждали при выводе выражения (53)[. Однако в ЭПР-спектроскопии изменения резонансной частоты описывают с учетом того, что эффективный магнитный момент электрона может изменяться, так что значение д не является постоянным, а изменяется от атома к атому или от молекулы к молекуле. Энергию Зеемана всегда записывают в виде (Шо = гРН -5, но значение д отличается от чисто спинового значения свободного электрона (2,002322) вследствие спин-орбитального взаимодействия, которое придает неспаренному электрону небольшой орбитальный угловой момент и изменяет эффективный магнитный момент. [c.41]


Смотреть страницы где упоминается термин Электронно-спиновая резонансная спектроскопия ЭПР : [c.21]    [c.521]    [c.237]   
Химия (1978) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Резонансные

Спектроскопия резонансная

Спектроскопия электронная

Спиновое эхо и -спектроскопия



© 2025 chem21.info Реклама на сайте