Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейтронография

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между атомами, ионами и молекулами в кристаллах. Поэтому, проходя через вещество, эти лучи дифрагируют. Возникающая при этом дифракционная картина строго соответствует структуре исследуемого вещества. Рентгеновские лучи (рентгенография) чаще всего применяют для исследования структуры кристаллов, электроны (электронография) — для исследования газов и кристаллов нейтроны (нейтронография) — для исследования жидкостей и твердых гел. [c.150]


    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]

    Для исследования структуры кристаллов и жидкостей применяется также нейтронография. [c.186]

    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между частицами (ионами, атомами или молекулами) в кристаллах. Поэтому, проходя через вещество, лучи рассеиваются (дифрагируют). Возникающая дифракционная картина строго соответствует структуре исследуемого вещества. Среди дифракционных методов различают рентгенографию, электронографию и нейтронографию. [c.182]

    Для исследования структуры кристаллов и ж идкостей применяется также нейтронография. Преимущество нейтронографии по сравнению с другими дифракционными методами исследования заключае-ется в возможности установить пространственное положение атомов водорода, что особенно ценно при изучении биологических объектов и помогает решению фундаментальных проблем молекулярной биологии. [c.154]

    Близко к этому методу (рентгенографии) стоит метод дифракции электронов (электронография). Волновая механика показывает, что при действии пучка электронов на поверхность кристалла возникают те же дифракционные эффекты, что и при действии рентгеновских лучей. Определение структуры кристаллов и молекул методом дифракции электронов привело к результатам, полностью совпадающим с результатами, получаемыми с помощью рентгенографии, В последние годы с этой же целью стали применяться и нейтроны (нейтронография), что дало возможность определять положение и водородного атома, чего не удавалось достигнуть методами рентгенографии и электронографии. [c.123]


    Преимущество нейтронографии по сравнению с другими дифракционными методами исследования заключается в возможности установить пространственное положение атомов водорода, что особенно ценно ири изучении биологических структур и помогает решению фундаментальных проблем молекулярной биологии. [c.187]

    Методом спинового эха в двойном резонансе были измерены константы квадрупольного взаимодействия и в М(С0)50 и изучено прямое диполь-дипольное взаимодействие ядерных спинов. Из этих данных было рассчитано межъядерное расстояние Мп—О (1,61 0,01) 10- нм, прекрасно согласующееся с найденным методом нейтронографии (1,601 0,016) 10 нм. Для Мп(С0)5Н позднее было определено, что расстояние Мп—Н равно (1,59 0,02)Х Х10-> нм. Такие исследования пока очень редки, но являются примером того, что сходные данные могут иногда быть получены раз- [c.102]

    В общем курсе кристаллохимии рассматриваются методы исследования структуры кристаллов — рентгеноструктурный анализ, нейтронография и, частично, электронография. Однако не дается изложение специального метода рентгеноструктурного анализа, который используется для определения абсолютной конфигурации молекул. Такая задача возникает при изучении оптически активных веществ. В гл. VIH, IX и X представлены оптические методы исследования оптически активных веществ. Особенность этих методов состоит в том, что легко определить с их помощью различие в абсолютной конфигурации молекул, но нет возможности прямого отнесения экспериментальных данных по ДОВ или КД к определенному энантиомеру. Именно эту проблему и решает метод аномального рассеяния рентгеновских лучей. [c.216]

    Отсутствие монотонной зависнмости амплитуды рассеяния нейтронов от атомного номера обусловливает возможность использования нейтронографии для таких исследований, как определение изотопного [c.106]

    Метод нейтронографии нашел применение при изучении текстуры тел больших объемов, детальном изучении дефектов кристаллов, структур аморфных веществ и т. д. [c.107]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    Дифракционные методы связаны с изучением углового распределения рассеянного без потери энергии излучения. С помощьк> дифракционных методов, использующих в качестве излучения монохроматические рентгеновские лучи (рентгеноструктурный анализ), нейтроны (нейтронография), электроны (газовая электронография), определяют зависящее от геометрии молекул угловое распределение интенсивности рассеяния данных видов излучения. [c.127]

    Эти открытия позволили последовательно создать ряд дополняющих друг друга методов дифракционного структурного анализа (рентгено-, электроно-, нейтронографию). Большой вклад в создание основ теории структурного анализа внесли работы отечественных кристаллографов по точечным, пространственным и магнитным группам симметрии кристаллов (А. В. Гадолин, Е. С. Федоров, Ю. В. Вульф, А. В. Шубников, Н. В. Белов) [12]. [c.16]

    Приведем некоторые значения длин волн, характерные для быстрых и медленных тепловых нейтронов. Быстрые нейтроны получаются в реакторах с энергией / 10 МэБ и им соответствуют длины волн к Ю А, сравнимые с размерами атомных ядер. Медленные тепловые нейтроны, находящиеся в тепловом равновесии с замедлителем при температурах от О до 100° С, имеют длины волн соответственно от 1,55 до 1,33 А ). Это обстоятельство , позволяет использовать медленные нейтроны в структурной нейтронографии. [c.73]

    Излучение нейтронов, так же как и радиоактивное излучение, оказывает вредное физиологическое воздействие на организм человека, поэтому при работе с нейтронографической аппаратурой необходимо использовать достаточно надежную защиту от проникающих излучений и применять либо дифрактометры с дистанционным управлением, либо полностью автоматизированные установки. Размеры аппаратуры для нейтронографии но крайней мере на порядок превосходят размеры аппаратуры для рентгеноструктурного анализа, а мощности нейтронных пучков в то же время на 2—3 порядка меньще. Тем не менее, во многих случаях для исследования магнитных структур нейтронография является единственно возможным методом прямого изучения распределения магнитных моментов атомов в кристаллах [24]. В последние годы широко используются автоматизированные нейтронографические дифрактометры, связанные с вычислительными и управляющими ЭВМ. [c.145]


    В настоящее время основным методом, позволяющим устанавливать спиновую структуру кристаллов, является магнитная нейтронография. В качестве примера возможного использования резонансного рассеяния для решения магнитной структуры приведем результаты, полученные в работе [4]. [c.239]

    Нам хотелось бы указать на две особенности книги, выделяющие ее среди большинства монографий и учебных пособий по структурному анализу как в отечественной, так и в мировой литературе. В книге дано последовательное изложение основ теории структурного анализа с помощью математического аппарата фурье-преобразований, что позволяет в наиболее компактной и изящной форме охватить все направления дифракционного структурного анализа. Здесь же впервые дано изложение резонансного структурного анализа, для исследования строения твердых тел использующего эффект Мёссбауэра. В книге читатель найдет материал, относящийся к рентгено-, электроно-, нейтроно- и месс-бауэрографии. Под мессбауэрографией, в широком смысле слова, мы понимаем различные аспекты применения ядерного гамма-резонанса, как явления и метода, позволяющего в наиболее полной и комплексной форме проводить исследование строения вещества по сравнению с рентгенографией и нейтронографией, включая и магнитную нейтронографию. [c.5]

    К методам, применяемым для построения диаграмм состояния, относятся методы растворимости, термического анализа, определения микроструктуры, рентгено-, электроно- и нейтронографии. [c.224]

    Предпринимались попытки перенесения в рентгенографию метода так называемого полнопрофильного анализа , разработанного для нейтронографии [З]. Разрешающая способность в нейтронографии ниже, поэтому учет совпадения [c.200]

    Физическими можно назвать методы измерения свойств, относящихся к индивидуальным соединениям. Их применяли вначале для исследования кристаллических веществ, затем стали исследовать и растворы, выделяя параметры, относящиеся к индивидуальным комплексам в растворе. Такие исследования позволяют получить сведения о составе и строении внутренней сферы комплексов, об их симметрии, о распределении зарядов, типе и характере связи, полностью расшифровать структуру кристаллических комплексов и т. д. К физическим методам относятся дифракционные (рентгенография, электронография, нейтронография), спектральные методы в широком диапазоне длин волн (от УФ до радиочастотной), гамма-резонансная, рентгеноэлектронная и фотоэлектронная спектроскопия, исследования магнитной восприимчивости и др. [c.199]

    Обычно нейтронографию применяют в сочетании с рентгенографией (после определения структуры) для уточнения положения атомов водорода и атомов с близкими атомными номерами. [c.209]

    Для экспериментального построения диаграмм состояния применяются методы определения растворимости, термического анализа, микроскопии, рентгенографии, электронографии, нейтронографии и др. [c.132]

    Развитие физики твердого тела началось с изучения механических свойств его, т. е. явлений упругости. Следующий этап — математическое описание групп симметрии кристаллов. Углубление такого подхода связано с переходом от чисто внешнего описания отдельных кристаллов (минералогия) к установлению связи между их формой и внутренней структурой (кристаллография). Основной метод экспериментального исследования внутренней структуры кристаллов — рентгенография, дополняемая в последние годы нейтронографией и другими физическими методами. [c.172]

    Как уже отмечалось, основной метод изучения структуры кристаллов —рентгенография, дополняемая нейтронографией. Длина волны рентгеновского излучения меньше межатомных расстояний в кристалле ( 10 см), так что кристалл служит для рентгеновских лучей дифракционной решеткой. Близкое значение имеет и средняя длина волны де Бройля для тепловых нейтронов при средних температурах (заметим, что рентгеновские лучи рассеиваются электронными оболочками атомов, нейтроны ядрами). [c.175]

    Для определения статистических сумм ггеобходимо знать молекулярные веса, моменты инерции и частоты колебаний исходных молекул и активированного комплекса. Так как молекулярный вес активированного комплекса равен сумме молекулярных весов участвующих в реакции частиц, то определение поступательных статистических сумм в выражении для константы скорости не представляет труда. Определение моментов инерции требует знания конфигурации исходных частиц и активированного комплекса. Конфигурация многих молекул в настоящее время хорошо известна в результате изучения геометрии молекул методами рентгеноструктурного анализа, электронографии и нейтронографии. Методов же изучения активированного комплекса в настояще- время не существует. Поэтому вращательные статистические ы для активированного комплекса можно вычислить лишь Определенных предположениях о строении активированного комплекса. Это иногда можно сделать с неплохой степенью точности, поскольку активированный комплекс является промежуточным состоянием между исходными частицами и частицами продуктов реакции. [c.69]

    Дифракционные методы рентгенография, электроно1рафия и нейтронография. Уравнение де Бройля X=hl mv) (т, v — масса и скорость частицы). Условие дифракции (г — межъядерное расстояние). Соотношение интенсивностей рассеяния /р /а /н = 1 10 10 . [c.268]

    С помощью электронографического анализа можно в принципе решать те же задачи, что и рентгенографическим анализом исследование кристаллической структуры, проведение фазового анализа, определение межплоскостных расстояний и периодов решетки, определение текстуры и ориентировки кристаллов и т. д. Однако особенности волновых свойств пучка электронов обусловливают и определенную специфику их использования, а также преимущества и недостатки по сравнению с рентгенографическим методом исследования кристаллов. Преимущество электронограмм заключается прежде всего в том, что в связи с малой длиной волны и сильным взаимодействием электронов с веществом этим методом можно получить резкие и интенсивные рефлексы при меньших размерах кристаллов и-меньшем количестве вещества, чем при рентгенографическом анализе, В рентгенографии, например, расширение линий начинается при р.эзмере частиц 500—900 А, а в электронографии оно становится заметным лишь при размерах 20—30 А. Интенсивность электронного луча гораздо больше, а необходимая экспозиция гораздо меньше, чем рентгеновских лучей, что дает существенные методические преимущества. Интенсивность отражений при дифракции электронов обычно настолько велика, что позволяет визуально на флюоресцирующем экране наблюдать дифракционную картину. Указанные особенности электронографии делают ее особенно ценной, например, при исследовании зародышей новых фаз. Электронография может использоваться также при изучении положений легких атомов в кристаллической решетке, хотя для этого более пригодна нейтронография, [c.105]

    В нейтронографичсском анализе для исследования веществ используются монохроматические пучки медленных нейтронов. Специфика использования нейтронографии для структур1 ых и других исследований веществ обусловлена следующими особенностями рассеяния нейтронов в кристаллической решетке по сравнению с рентгеновскими лучами нейтроны рассеиваются ядрами атомов, а рентгеновские лучи в основном электронами рассеяние нейтронов не зависит от угла (направления) падения пучка, тогда как рассеяние рентгеновских лучей от него зависит амплитуда рассеяния нейтронов не монотонно зависит от атомного номера элемента, а в случяе рентгеновских лучей функция атомного рассеяния растет с ростом атомного номера нейтроны обладают магнитным моментом нейтроны глубоко проникают в массу исследуемого образца и слабо поглощаются веществом. [c.106]

    Взаимодействие нейтрона, имеющего магнитный момент, с магнитным моментом атомов и кристаллической решетки позволяет с помощью нейтронографии исследовать магнитные структуры веществ и их и.эменение в зависимости от температуры, поскольку, например, рассеяние нейтроно ферромагнитными веществами резко отличается от рассеяния парамагнитными, а также 11зучать наличие доменов — областей с определенным расположением магнитных моментов, поскольку наличие доменов вызывает рассеяние нер тронов под малыми углами. [c.107]

    Однако при решении этой задачи в рамках рентгеноструктурного анализа возникают дополнительные трудности, обусловленные, с одной стороны, увеличением длительности экспозиции, так как величина амплитуды рассеяния для рентгеновских лучей значительно меньше, чем для электронов. Если в электронографии время фиксирования дифракционной картины на фотопластинку длится от нескольких секунд до двух-трех минут, то в рентгенографии экспозиция исчисляется часами, а в нейтронографии иногда и несколькими десятками часов. С другой стороны, более сильная зависимость амплитуды рассеяния рентгеновских лучей от порядкового номера атомов (по сравнению с электронами) не позволяет надежно исследовать строение молекул с резким различием в величинах зарядов атомных ядер. Поскольку рассеяние рентгеновских лучей происходит на электронных оболочках атомов, основной вклад в интенсивность рассеяния этого вида излучения вносится атомами с большим зарядом ядра. Рассеяние же на легких атомах будет незначительно, и поэтому отвечающие им межъядер-ные расстояния находят с невысокой точностью. [c.128]

    Рассеяние и поглощение резонансных гамма-квантов широко используется в весьма популярном методе мёссбауэровской спектроскопии. Дифракция резонансных гамма-квантов используется в новом резонансном методе структурного анализа — мёссбауэро-графии, сочетающем возможности рентгено- и нейтронографии и открывающем новые перспективы в исследовании атомной и магнитной Структуры твердых тел и в изучении внутрикристаллических магнитных и электрических полей. [c.16]

    Экспериментальные исследования структуры низкотемпературных модификаций интерметаллических соединений Tb oj и TbFej, выполненные методами низкотемпературной рентгенографии [21] и нейтронографии [22], подтвердили теоретические расчеты работы [20]. [c.165]

    Широко используются в химии различные формы взаимодействия вещества с электромагнитным излучением рассеяние света при нефелометрии, определение показателя преломления, оптического вращения. Особенно часто для характеристики соединений используются спектры поглощения в различных областях электромагнитных колебаний. Поглощение в области видимого или ультрафиолетового спектра характеризует электронные свойства молекул. Р1нфракрасные спектры отражают колебания ядер. Наконец, дифракция рентгеновских лучей открывает возможность устанавливать геометрию молекул, чему служат также электронография и нейтронография. Дополнительную информацию о строении молекул может дать резонансная 7-спектроскопия (эффект Мессбауэра). [c.22]

    S последние десятилетия получил распространение метод полнопрофильного анализа - сопоставления не интенсивностей линий, а дифракционных кривых в целом (этот вопрос более подробно рассмотрен в следующей главе). Более широко эта методика применяется в нейтронографии (из-за большой сложности там монокристалльных нейтронографических исследований). [c.187]

    Нейтронография. Эта область структурного анализа развивается со второй половины 50-х годов, когда появились ядерные реакторы, дающие мощные пучки нейтронов. Попав на поверхность кристалла, нейтроны отражаются, если удовлетворяется условие (6.1). Метод поэтому подобен )ентгеноструктурному анализу, и N основное различие заключается в аппаратуре и требованиях к кри- сталлу. Примерный размер кри- О " сгалла, необходимый для полу- чения четкой дифракционной кар-л гины 0,5—1 см (для рентгено- структурного анализа 0,1—1 мм). [c.207]


Смотреть страницы где упоминается термин Нейтронография: [c.120]    [c.46]    [c.107]    [c.191]    [c.236]    [c.208]    [c.240]   
Смотреть главы в:

Основные понятия структурного анализа -> Нейтронография

Основные начала органической химии том 1 -> Нейтронография

Возможности химии сегодня и завтра -> Нейтронография

История органической химии  -> Нейтронография

Теоретические основы органической химии -> Нейтронография

Физико-химия полимеров 1978 -> Нейтронография

История органической химии -> Нейтронография


Общая химия (1984) -- [ c.197 ]

Общая и неорганическая химия Изд.3 (1998) -- [ c.172 ]

Химический энциклопедический словарь (1983) -- [ c.371 ]

Начала органической химии Книга первая (1969) -- [ c.360 ]

Биофизика (1988) -- [ c.96 , c.138 , c.139 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.371 ]

Краткий курс физической химии Изд5 (1978) -- [ c.122 ]

Водородная связь (1964) -- [ c.219 , c.220 , c.289 ]

Химия цеолитов и катализ на цеолитах Том2 (1980) -- [ c.73 , c.81 ]

Физика и химия твердого состояния органических соединений (1967) -- [ c.111 ]

Теоретические проблемы органической химии (1956) -- [ c.26 ]

Основные начала органической химии том 1 (1963) -- [ c.743 ]

Возможности химии сегодня и завтра (1992) -- [ c.190 , c.233 ]

История органической химии (1976) -- [ c.250 ]

Теоретические основы органической химии (1964) -- [ c.43 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.93 ]

Очерки кристаллохимии (1974) -- [ c.344 ]

Физико-химия полимеров 1978 (1978) -- [ c.82 , c.445 ]

История органической химии (1976) -- [ c.250 ]

Физические методы исследования в химии 1987 (1987) -- [ c.9 ]

Неорганическая химия (1969) -- [ c.247 ]

Общая и неорганическая химия (1981) -- [ c.154 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.29 , c.116 , c.126 , c.204 , c.219 , c.221 , c.221 , c.295 ]

Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.160 ]

Конфигурационная статистика полимерных цепей 1959 (1959) -- [ c.132 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.118 ]

Курс физической химии Издание 3 (1975) -- [ c.171 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.566 ]

Основы общей химии Том 3 (1970) -- [ c.352 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтронография аммония галогениды

Органические соединения нейтронография

Получение нейтронограмм и основные применения нейтронографии

спектры нейтронография



© 2025 chem21.info Реклама на сайте