Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура методы исследования

    Статические методы исследования позволяют оценить такие важные параметры граничных слоев, как прочность, упругость, толщина. Исследования свойств граничных слоев этими методами сопряжены с изменениями структуры, а следовательно, и свойств изучаемых образцов вследствие больших механических напряжений, возникающих в граничных слоях. Все это затрудняет и делает неоднозначной интерпретацию экспериментальных данных. [c.73]


    В дифракционных методах исследования структуры используются рентгеновские лучи, поток электронов или нейтронов с длиной волны того же порядка, что и расстояния между атомами в молекулах или между атомами, ионами и молекулами в кристаллах. Поэтому, проходя через вещество, эти лучи дифрагируют. Возникающая при этом дифракционная картина строго соответствует структуре исследуемого вещества. Рентгеновские лучи (рентгенография) чаще всего применяют для исследования структуры кристаллов, электроны (электронография) — для исследования газов и кристаллов нейтроны (нейтронография) — для исследования жидкостей и твердых гел. [c.150]

    Формы существования ванадия в нефтях изучены по сравнению с другими элементами более полно, что, очевидно, связано с большим значением, которое имеет ванадий в нефтепереработке и органической геохимии, а также с его относительно высоким содержанием в нефтях. Однако единственными надежно идентифицированными к настоящему времени ванадийсодержащими компонентами нефтей являются ванадилпорфирины. Это в значительной степени обусловлено относнтельной легкостью их обнаружения, возможностью выделения в относительно чистом виде и высоким уровнем развития методов исследования их химической структуры. Исчерпывающую информацию о наших знаниях по различным аспектам геохимии ванадилпорфиринов можно получить из ряда специальных обзоров, посвященных этой теме [65, 813, 955]. [c.177]

    Монография содержит обзор современного состояния исследований в области химического состава и свойств, структуры, методов исследования и направлений переработки и использования смолисто-асфаль-теновых веществ нефти. Изложены научные основы комплексной химической переработки тяжелых нефтяных остатков, являющейся одной из важнейших народнохозяйственных проблем. [c.2]

    Для исследования структуры кристаллов и ж идкостей применяется также нейтронография. Преимущество нейтронографии по сравнению с другими дифракционными методами исследования заключае-ется в возможности установить пространственное положение атомов водорода, что особенно ценно при изучении биологических объектов и помогает решению фундаментальных проблем молекулярной биологии. [c.154]

    Вторым недостатком книги, в значительной степени объясняющимся характером ее построения, являются ее некоторая фрагментарность и отсутствие внутренней связи между отдельными ее частями в тех разделах, где это вызывается существом дела. Так, например, главы, посвященные ультрафиолетовым и инфракрасным спектрам и глава о молекулярной структуре и вычислении термодинамических величин на основании спектроскопических данных недостаточно связаны между собой, что понижает их ценность для неспециалиста в области спектральных методов исследования углеводородов. [c.5]


    Химические методы исследования, применявшиеся в ранних работах по изучению состава нефти, нельзя считать надежными, так как они изменяют структуру отдельных углеводородов, а некоторые даже полностью разрушают. Поэтому сейчас усиленно развиваются физические методы разделения и одновременно разрабатываются новые спектроскопические методы определения состава смесей углеводородов. [c.13]

    Для изучения сплавов и их соединений широко применяется метод исследования микроструктуры отполированной и протравленной поверхности металла в отраженном свете. Этот метод введен в практику горным инженере], Н. П. Аносовым в 1831 году. Он позволяет выяснять, как зависит структура затвердевшего сплава от состава и от режима охлаждения, изучать связь между структурой сплава и его свойствами и сознательно искать пути получения сплавов с желательными свойствами. [c.411]

    Книга представляет собой современное пособие, с помощью которого химики самых различных специальностей смогут овладеть основами практически всех физических методов исследования структуры химических соединений и их реакционной способности, а также научиться применять их для структурного и количественного анализа. [c.4]

    При изложении теории химической связи, строения и свойств молекул рассмотрены метод молекулярных орбиталей МО ЛКАО, широко применяемый сегодня в практике расчетов строения электронной структуры и реакционной способности молекул, и наиболее информативный экспериментальный метод исследования — молекулярная спектроскопия. [c.3]

    Электрохимический метод исследования кинетики жидкофазных каталитических реакций основан на том, что, измеряя потенциал катализатора и используя кривые заряжания для данного металла в данном растворителе, можно с достаточной точностью определить концентрацию сорбированного газа (водорода, кислорода) на поверхности катализатора. Знание этой концентрации и зависимости ее от таких параметров, как парциальное давление газа, концентрации реагентов и продуктов, природа растворителя, pH среды и т. п., дают хорошее обоснование для модели процесса и структуры кинетических уравнений. [c.75]

    Как научное направление, моделирование процессов нефтепереработки и нефтехимии развивается и совершенствуется, подобно самим процессам. Открываются интересные проблемы для научных работников в создании новых методов исследования, совершенствовании структур математических описаний, алгоритмов расчетов. Так, становится очевидной ограниченность области применения детерминированных описаний, однако не развиты методы создания вероятностных описаний, учитывающих физикохимические закономерности. [c.376]

    В заключение сошлемся на статьи общего характера. Приведены рекомендации [437] по использованию перегородок в среде агрессивных веществ (неорганические и органические кислоты, основания, соли, окислители, органические растворители) представлены данные [423] о структуре и свойствах фильтровальных тканей, а также о нетканых материалах рассмотрены [438] пористость и проницаемость керамических, металлокерамических, пластмассовых и природных пористых материалов даны указания [439] о выборе фильтровальных тканей в зависимости от назначения и условий фильтрования, а также свойств суспензии и осадка с учетом структуры ткани сделан обзор литературы [440], в частности по проницаемости и задерживающей способности некоторых фильтровальных перегородок дана [441] классификация натуральных и синтетических волокон и рассмотрены принципы выбора фильтровальных тканей помещена [442] классификация разнообразных фильтровальных перегородок, а также приведены их характеристики и методы исследования рассмотрены [443] классификация и выбор фильтровальных тканей. [c.382]

    Из применяемых на практике адсорбентов первое место принадлежит различным видам специально изготовляемых адсорбционных углей (древесный, кровяной, костяной и др.). Они могут обладать исключительно развитой пористостью и, следовательно, огромной поверхностью пор. Так, 1 г хорошо адсорбирующего угля (активного, или активированного угля) обладает внутренней поверхностью пор, достигающей 400—900 м . Наряду с общим развитием пористости для адсорбционных процессов весьма существенное значение имеет и характер пористости, т. е, соотношение между количеством пор того или другого сечения. В работах М. М. Дубинина с сотрудниками были разработаны методы исследования тонкой структуры пор адсорбентов и показано большое значение ее для адсорбционной способности в различных условиях. [c.366]

    Для выбора структуры модели, адекватной реальному процессу массопередачи, необходимо использовать несколько методов исследования структуры потоков. [c.132]

    Выводы, сделанные на основе исследования плотности кокса этим методом, не противоречат основным результатам рентгеноструктурного анализа, а также данным, полученным новыми современными методами исследования тонкой структуры коксов. Это объясняется тем, что величина и характер пористости коксов из различных нефтепродуктов, так же как и величина плотности, тесно связаны с природой исходного сырья, механизмом процесса коксования и последующими изменениями структуры углеродистого вещества при тепловом воздействии на кокс. Уже исследования текстуры нефтяных коксов, выполненные нами, показывают, что пространственное распределение плотной массы и микропор (при увеличении в 60—200 раз) довольно четко отражает различия в природе исходного сырья для коксования. [c.231]


    Если вид функции отклика комбинированной модели для линейных систем не зависит от взаимного расположения ее составляющих, то для нелинейных процессов порядок расположения отдельных зон модели весьма существен. Поэтому ни один из вышеперечисленных методов установления адекватности не позволяет установить структуру модели. Только использование комплекса методов исследования - методов установившегося состояния, импульсного возмущения и отсечки, либо метода моментов функции распределения (см. гл. 3.2) - позволяет получить структуру модели, адекватную реальному процессу. Это обусловливает необходимость второго этапа моделирования -проверки адекватности модели реальному процессу массопередачи. Этот этап особенно важен в случае анализа нелинейных процессов. [c.132]

    Основными этапами реализации приведенных выше методов исследования структуры потоков являются экспериментальные работы по выявлению гидродинамической обстановки на барботажных тарелках и поиск оптимальных конструктивных решений. В процессе экспериментальных исследований используют индикаторные методы, применение которых связано со значительными затратами времени на сам эксперимент и обработку информации вручную, что снижает точность и достоверность получаемой информации. Это обусловило создание авторами издания стенда автоматизированного экспериментирования (САЭ). [c.161]

    Многообразие свойств и требований, предъявляемых к нефтепродуктам, задачи, решаемые в настоящей работе, предопределили, в свою очередь, широкий спектр методов исследования и испытаний, включающий стандартизованные, отраслевые или межведомственные квалификационные и уникальные физические методы изучения микроскопических свойств и структуры нефтяных дисперсных систем, краткая характеристика которых приводится ниже. [c.31]

    Приведенные выше данные показывают, что выяснение структуры и состава комплексов, образующихся при взаимодействии ароматических углеводородов с каталитическими системами, является сложной задачей. Тем не менее хотелось бы отметить заметные успехи в этой области, и, в первую очередь, благодаря использованию физических методов исследования, особенно ЯМР и ЭПР-спектроскопии. [c.85]

    Такая пузырчатость кокса определяется затвердеванием и не изменяется при последующем нагреве в сокращенное подобие той же структуры, обусловленное усадкой кокса. Типичным методом исследования является оптическая микроскопия на полированных срезах (рис. 43). [c.126]

    Механические — составляют наиболее обширную группу методов исследования граничных слоев жидкости, так как их механические свойства непосредственно связаны со строением аномальных слоев и действующими на них молекулярными силами. Именно из-за тесной связи со структурой механические (реологические) параметры получили в физико-химической механике название структурно-механических. [c.73]

    В исследопапии гетероорганических соединений реактивных топлив метод инфракрасной спектрометрии молсет быть использован для 1) идентификации индивидуальных соединений, 2) количественного анализа простых смесей известного состава, 3) определения особенностей химической структуры (наличие и расположение функциональных групп, отдельных связей, изомерных структур), 4) исследования кинетики окисления различных соединений и изменения структуры соединений под действием различных факторов. [c.117]

    При неравномерности структуры потока дисперсной фазЦ (неодинаковый размер капель, застойные зоны) может существенно увеличиваться коэффициент продольного перемещивания п.д, определяемый импульсным методом. Исследование продольного перемешивания дисперсной фазы в РДЭ показало [151],что в случае диспергирования легкой фазы часть ее скапливается вблизи вала под горизонтальными дисками ротора, образуя застойные зоны конической формы. Наблюдавшееся отклонение результатов, полученных при исследовании продольного перемешивания дисперсной фазы [148], от рассчитанных по уравнению (5) табл. 6, мож но объяснить тем, что в работе 148] применяли импульсный ввод траооера и,. следовательно, определяли сум/марный эфф ект от не рав номвряостей потока и его обратного промешивания. [c.169]

    Таким образом, в рамках 3G DENDRAL были реализованы достаточно мощные методы решения сложных комбинаторных задач, основанные на использовании знаний о предметной области и результатах, полученных в искусственном интеллекте. В настоящее время исследования в этом проекте развиваются в двух основных направлениях разработка специальных исполнительных программ для анализа молекулярных структур и исследование некоторых проблем естественного вывода методами искусственного интеллекта. [c.53]

    Во втором томе рассматривается теория таких важных современных спектроскопических методов исследования, как ЯМР, ЭПР, мёссбауэровская спектроскопия, и на примере большого числа соединений самых различных классов показывается, как проводят изучение их структуры и реакционной способности. [c.4]

    Другой широко распространенный метод исследования заключается в использовании рентгеновских лучей. Источник последних, коллимированный для уменьшения рассеивания (экстрафокальиое излучение), устанавливается на одной стороне псевдоожиженного слоя проникающий пучок лучей воспринимается фйсфоресцирующим экраном (рис. 1У-4). Газовый пузырь появляется на негативе в виде темного пятна па световом фоне, т. е. метод совершенно аналогичен медицинской рентгенографии. Огромное преимущество этого метода состоит в том, что слой может иметь любую форму и, в принципе, любые размеры, и структура его совершенно не искажается при наблюдении. Метод позволяет визуально оценивать размеры и форму пузыря в любом его положении и пол чить гораздо больше информации, чем при использовании зондов. [c.128]

    Изучение физико-химического процесса на любой установке (лабораторной, опытной, промышленной) представляет собой физическое моделирование, которое было основным методом исследования в течение длительного периода. Однако развитие науки показало, что не все процессы можно изучать на физических моделях. Например, крайне сложно осуществить физическое моделирование закона тяготения Ньютона Больцман долгие годы отстаивал свою молекулярно-кинетическую теорию, которая не признавалась крупнейшими авторитетами его времени на том основанпи, что поведение молекул не наглядно, их трудно физически моделировать. Выход был найден в аналогии (преимущественно математической) разных по физической сущности явлений природы . Например, законы Ньютона (притяжение тел) и Кулона (притяжение электростатических зарядов) описываются одинаковыми уравнениями. Используя аналогию физических явлений, создают модель, в которой осуществляют новый процесс, описываемый уравнениями такой же структуры, что и исходный. [c.12]

    В тридцатых — сороковых годах произошел резкий скачок в технических возможностях изучения химического состава сложных смесей. Для разделения тяжелых нефтяных фракций наряду с методами перегонки и ректификации начали использовать хроматографию на адсорбентах, комплексообразование с карбамидом, термическую диффузию. Получили широкое распространение многочисленные физические методы исследования УФ- и ИК-опектроскопия, ядерно-магнитный резонанс, масс-опектрометрия, дифференциально-термический анализ, электрофизические методы (определение диэлектрической проницаемости, удельного и объемного сопротивлений, диэлектрических потерь) и др. Большое применение нашли расчетные методы определения структурно-группового состава, позволившие в первом приближении получить представление о соста1ве масляных фракций. Новые методы разделения и анализа значительно углубили наши познания о составе и структуре тяжелых компонентов нефти и позволили более обоснованно решать технологические задачи производства масел и химмотологические проблемы рационального их использования в условиях эксплуатации. [c.8]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Непосредственное изучение структуры асфальтеновых металлсодержащих комплексов очень сильно осложнено пх многообразием и отсутствием методов выделения фрагментов с тем илп пным микроэлементом или объедипенных общностью химического тппа комплекса. Из известных методов исследования, пожалуй, только метод ЭПР может дать некоторую информацию о металлокомплек-сах в сложной асфальтеновой смеси. [c.170]

    Эта теория обтояснпла многообразие органических веществ. А. М. Бутлеров показал , что внутренняя структура молекул познаваема, доступна для сознательного воспроизведения. Изучая химические превраптения, на основе теории А. М. Бутлерова можно узнать строение молекул — эта теория указала химические методы исследования строения вещества. Например, для молекулы этило-гюго спирта СдНбО с учетом валентности элементов можно предположить два варианта структуры  [c.53]

    За последние десятилетия неорганическая химия значительно изменилась качественно и количественно. Экспериментальные методы исследования структуры и квантовохимические расчеты позво- лили выяснить расположение атомов и природу химической связи в очень многих соединениях. Достижения химии координациоипых соедпнений, разработка новых методов неорганического синтеза (особенно реакций в неводных средах), исследование плазмы привели к открытию огромного числа новых веществ. Если раньше считали что неорганическая химия, в отличие от органической, бедна соединениями, то теперь положение коренным образом из менилось. [c.295]

    Как следует из материала рассмотренной главы, применение указанной методики позволило решить ряд важных практических задач в области расчета процессов, протекающих в химико-технологической аппаратуре. Так, развит прямой метод исследования гидродинамической структуры потоков в аппаратах на основе специфических свойств неустаповивпшхся течений жидкостей и газов в насадке и пористой среде установлен характерный для насадочных колонн гидродинамический эффект, проявляющийся в наличии экстремальной зависимости статической удерживающей способности от нагрузок по фазам на аппарат созданы методики и получены расчетные формулы для определения важнейпшх гидродинамических параметров структур потоков — коэффициентов продольного перемешивания, относительных объемов проточных и застойных зон, коэффициентов обмена между проточными и застойными зонами. Результаты исследования гидродинамической структуры потоков в насадке положены в основу анализа динамики процесса абсорбции в насадочных колоннах, оценки управляемости по каналам гидродинамики и массообмена и синтеза оптимального управления этими аппаратами. [c.433]

    Хотя отдельные положения теории Бернала и Фаулера при дальнейшем развитии экспериментальных методов исследования были пересмотрены, основные выводы об известном соответствии структур, возникающих из связанных между собой молекул в жидкой воде и во льду, пoлy fили подтверждение и при дальнейших исследованиях. В дальнейшем разными исследователями на основе результатов, полученных с помощью новых экспериментальных методов, были разработаны различные теории жидкого состояния воды, но ни одна из них не находится еще в достаточном согласии со всей совокупностью экспериментальных данных о свойствах воды. Можио считать, что в жидкой воде находятся в динамическом равновесии образования из тетраэдрически связанных молекул и частично или полностью свободные молекулы. [c.165]

    Пособие составлено а соответствии с программой по физической химии для химических специальностей химико-техвологических вузов и факультетов. В нем подробно изложены основные разделы курса физической химии квантовоиеханические основы теории хниическоЗ связи, строения атомов и молекул, спектральные методы исследования молекулярной структуры, феноменологическая в статистическая термодинамика, термодинамика растворов н фазовых равновесий, электрохимия, химическая кинетика, гомогенный н гетерогенный катализ. [c.2]

    Спектральные методы широко используются при исследованиях структуры и энергетических уровней молекул наряду с дифракционными и расчетными, квантовохимическими методами. Спектральные методы наиболее информативны. Полученные с их помощью значения молекулярных констант широко используются при статистикотермодинамических расчетах констант равновесия химических реакций и теплофизических свойств газов. Эти методы нашли также повсеместное применение в химическом анализе. В связи с этим из различных методов исследования структуры молекул остановимся именно на спектральных методах.  [c.141]

    При исследовании некоторых органических жидкостей (дибу-тилфталат, бензотрон и т. п.) метод сдувания позволил установить различие в структуре граничных слоев и объемной жидкости. Переход от объемной жидкости к граничному слою иногда происходит скачкообразно, подобно фазовому переходу первого рода, нО при определенной толщине. В этом видна уникальность этого абсолютного метода исследования свойств граничных слоев, прецизионность которого значительно повысилась благодаря применению в эллипсометрии газового лазера [52]. [c.73]


Библиография для Структура методы исследования: [c.80]    [c.600]   
Смотреть страницы где упоминается термин Структура методы исследования: [c.83]    [c.76]    [c.19]    [c.265]    [c.188]    [c.47]    [c.345]    [c.13]    [c.103]   
Физикохимия полимеров Издание второе (1966) -- [ c.98 ]

Физикохимия полимеров (1968) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Метод структур



© 2025 chem21.info Реклама на сайте