Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Делокализация неспаренного электрона

    Заместители, связанные с несущим свободную валентность атомом, также влияют, и подчас очень существенно, на активность радикала. Например, в реакции отрыва атома Н от С — Н-связи алкильные радикалы по своей активности не одинаковы и располагаются в ряд СНз- >-СНг >-СН (СНз)2 >-С(СНз)а. К сильному снижению активности радикала приводит делокализация неспаренного электрона. Такая делокализация имеет место, в частности, в бензиль-ном радикале, о чем шла речь выше. В реакции типа [c.140]


    В дальнейшем молекулы бутадиена присоединяются в основном к четвертому атому углерода, так как в бутадиене облако я-электронов концентрируется преимущественно в области кратных связей. Однако вследствие делокализации неспаренного электрона и близкого значения энергий активации роста цепей в положениях 1,4- и 1,2- (28,8 и 31,5 кДж/моль соответственно) в некоторой мере образуются и звенья 1,2- [18]. [c.141]

    В результате окисление топлива развивается и в присутствии антиокислителя, т. е. он не устраняет окисления углеводородов топлива, но задерживает его развитие, удлиняя период индукции. Общий эффект ингибирования определяется как свойствами образующихся радикалов антиокислителя (чем сильнее антиокислитель, тем менее активны его радикалы), так и скоростью их взаимодействия с перекисными радикалами (чем больще скорость, тем эффективнее антиокислитель) [22]. Наиболее эффективные антиокислители относятся к классам фенолов, аминов (ароматических) и аминофе-нолов, т. е. соединений со структурой, обеспечивающей наибольшую делокализацию неспаренного электрона и, следовательно, образование достаточно устойчивых радикалов [23]. [c.71]

    Высокая стабильность аллильного радикала объясняется сопряжением неспаренного электрона с двойной связью. Вследствие сопряжения энергия активации взаимодействия аллильного радикала с молекулой, с которой он реагирует, возрастает. Свободные радикалы, получаемые при термодеструкции компонентов ароматических концентратов и нефтяных остатков, обладающие еще большей степенью делокализации неспаренного электрона, могут иметь еще меньшую активность, чем аллильный радикал. [c.161]

    Вследствие делокализации неспаренного электрона радикал аллил оказывается значительно менее химически активным, чем радикал к-пропил с локализованной свободной валентностью  [c.16]

    Из приведенной на рис. 2-32 кривой изменения степени делокализации неспаренных электронов (частоты обмена Не) от температуры обработки среднетемпературного пека видно, что температура максимума Я, соответствует началу роста кривой изменения концентраций парамагнитных центров (рис. 2-31). [c.90]

    Аналогично можно объяснить и предпочтительное образование 1,2-диметиленциклобутана из аллена. В данном случае наиболее выгодным будет промежуточное образование бирадикала (33) с наибольшей делокализацией неспаренных электронов. [c.500]

    Величина константы СТВ, т. е. расстояние между линиями в мультиплетах, характеризует степень делокализации неспаренного электрона и зависит от спиновой плотности на ядрах. Спиновая плотность — это не то же, что плотность неспаренного электрона. Дело в том, что его орбиталь может поляризовать спины спаренных электронов на прилежащей ст-связи, т. е. каждый из них будет несколько больше относиться к одному из связанных атомов, чем к другому. Поэтому на каждом из ядер будет некоторая спиновая плотность, даже на том, на котором нет плотности неспаренного электрона. [c.62]


    Так, например, из значения -фактора и сверхтонкой структуры спектра ЭПР получают прямые данные о числе и типах ядер, обладающих спином, с которыми взаимодействует электрон. Иллюстрацией может служить определение по виду расщепления и константе СТВ степени делокализации неспаренного электрона, а по -фактору— основного места его нахождения в продукте окисления хром (III)порфиринового комплекса  [c.72]

    Стабильность обусловлена пе только делокализацией неспаренного электрона по фенильным ядрам, но и устранением стерического напряжения при переходе от тетраэдрической структуры центрального атома углерода к плоскостной. Подобную структуру имеет и соответствующий катион. [c.273]

    Появление эффекта сверхтонкой структуры связано с взаимодействием магнитного момента неспаренного электрона с магнитным моментом ядра. Сверхтонкое взаимодействие представляет больщой интерес для ЭПР-спектроскопии, поскольку получаются характерные спектры, по которым можно проводить идентификацию парамагнитной частицы, а также получать сведения о делокализации неспаренного электрона по парамагнитному соединению. [c.207]

    Степень диссоциации 3%-ного раствора гексафенилэтана в бензоле равна примерно 0,02 при 20°С и 0,1 при 80°С. Причина этого явления (в противоположность гексаметилэтану, который не показывает подобной диссоциации) состоит в относительной стабильности трифенилметильного радикала по сравнению с не-диссоциированным гексафенилэтаном, обусловленной делокализацией неспаренного электрона по я-орбиталям бензольных колец. [c.278]

    Можно написать еще ряд подобных структур, вносящих свой вклад в стабилизацию, однако стабилизация не столь значительна, как можно было бы ожидать на первый взгляд, и причиной этого является взаимодействие между атомами водорода в орто-положениях. Такое взаимодействие препятствует полной копланарности ароматических колец, так что радикал получается не плоским, а скорее напоминает трехлопастный пропеллер с повернутыми лопастями, что существенно препятствует делокализации неспаренного электрона, а следовательно, и стабилизации радикала. Легкость образования этих радикалов и их стабильность в случае гексафенилэтана обусловлены стерическим отталкиванием, которое уменьшается при диссоциации. -Поэтому введение различных заместителей в бензольное кольцо облегчает диссоциацию особенно сильно этот эффект проявляется в тех случаях, когда заместители находятся в орто-положениях, где их стерическое отталкивание, как и следовало ожидать, проявляется наиболее сильно. Было показано далее, что соединение I [c.278]

    Этот радикал весьма устойчив (вследствие делокализации неспаренного электрона) и образует со многими радикалами устойчивые продукты, которые могут быть выделены. Его раствор имеет характерную ярко-фиолетовую окраску при взаимодействии с другими радикалами эта-окраска пропадает, в связи с чем за соответствующими реакциями легко следить колориметрически. [c.279]

    Аллильный и бензильный радикалы характеризуются значительно более высокой стабильностью, поскольку в этих случаях становится возможной делокализация неспаренного электрона -ПО л орбиталям  [c.280]

    Свободные радикалы, получаемые прп распаде слабых звеньев надмолекулярных структур, обладающие еще большей степенью делокализации неспаренного электрона и диффузионными затруднениями к перемещению, могут иметь еще меньшую активность, чем аллильный радикал. Влияние диффузионных факторов на активность малоактивного радикала впервые было показано Шмидтом [77], применившим для стабилизации радикалов стеклообразную массу. [c.162]

    Другим важным фактором, определяющим прочность пероксидной связи, является стабильность образующегося RO -радикала. По-ви-димому, стабилизация ацетоксильного радикала за счет делокализации неспаренного электрона по карбоксильному фрагменту обусловливает снижение ДО—О) в сравнении с гидропероксидом трифторметила (см. табл. 2.26). [c.132]

    Методы обнаружения и анализа. Осн. специфич. методы обнаружения и исследования строения Р. с. основаны на использовании спектроскопии электронного парамагнитного резонанса. Спектры ЭПР дают информацию о хим. строении Р. с., степени делокализации неспаренного электрона, о распределении спиновой плотности по разл. атомам частицы. Методом ЭПР можно обнаружить радикалы в концентрации 10 моль/л. [c.156]

    Теоретические спектры, рассчитанные при условии замещения Н на полностью совпали с экспериментальными. Срав нительно высокая константа сверхтонкого сопряжения спектров от р-протонов свидетельствует о значительной плотности неспаренного электрона на а-углеродном атоме, что характерно для бензильных радикалов. Наблюдаемая константа будет в 2 раза меньше, если делокализация неспаренного электрона происходит в димере. [c.84]

    Свободные радикалы, получаемые при деструкции компонентов нефтяных остатков, обладающие еще большей степенью делокализации неспаренного электрона, будут иметь еще меньшую активность, чем аллильный радикал. Такой вывод соответствует взглядам [2, 21], согласно которым из молекул с наибольшей активностью (в нашем случае смол, асфальтенов) получаются при разрыве двойной связи соответствующие радикалы с пониженной активностью. Разумеется, это не исключает возможности образования при распаде нефтяных смол и асфальтенов и активных свободных радикалов (СНз, СзНт и др.). Следовательно, прн распаде компонентов нефтяных остатков в зоне реакции одновременно существуют свободные радикалы различной активности, приводящие к конкурирующим реакциям, что в конечном счете обусловливает получение разнообразных продуктов. [c.85]


    Выявлена обратная зависимость между парамагнитностью и растворимостью асфальтенов [267]. По данным ЭПР для всех асфальтенов наблюдается большое время спин-решетчатой релаксации, что подтверждает вывод о значительной делокализации неспаренного электрона, имеющего малую константу спин-орби-тального взаимодействия. [c.283]

    В синтезе грамицидина 8 участвуют два фермента легкий (М = 100 000) и тяжелый (Л4 = 280 ООО), Синтез начинается иа легком ферменте, который действует также как рацемаза , превращая ь-фенилаланин в о-энантиомер. Нуклеофильная тиольная [руппа легкого фермента атакует активированный фенилаланин (АТР и аминокислота реагируют с образованием ангидрида), образуя (катализ основанием) высокоэнергетическин тиоэфир, ДСп1др —38 кДж/моль (—8 ккал/моль). Различие свойств тио-эфиров и ацильных эфиров связано с гораздо большей степенью делокализации неспаренных электронов кислородом карбонильной группы, чем атомом серы. Такая делокализация понижает электрофильность карбонильной группы. Кроме того, тиольная группа — более хорошая уходящая группа, чем соответствующая гидроксильная. Напомним, что для меркаптана рКа Ю, тогда как для спирта рКа 15 (табл. 2.1). [c.62]

    Накопление фенильных групп приводит ко все большей делокализации неспаренного электрона и, следовательно, к его стабилизации. Об этом свидетельствует степень диссоциации некоторых арилэтанов, приведенная в табл. 25. [c.260]

    Расшифровка СТС спектров ЭПР очень важна для органической химии при исследовании свободных радикалов. По СТС спектров ЭПР определяют область делокализации неспаренного электрона в свободном радикале. Кроме того, можно найти плотность неспа-репного электрона на соответствующих атомах, что дает возмож-ность судить о реакционной способности отдельных фрагментов радикала. В неорганической химии изучение СТС спектров ЭПР дает ценную информацию при установлении структуры комплексных соединений. Метод ЭПР используют также и при исследовании дефектов в кристаллах, в том числе дефектов, возникающих после облучения нейтронами. ЭПР приобрел особый интерес и для квантовой электроники в связи с тем, что открылась возможность использова- [c.191]

    Скорость реакции радикального арилирования бензола возрастает при введении в его молекулу заместителей любого характера, причем заместитель ориентирует вступающий заместитель преимущественно в орто- и пара-положения. Так, нитробензол и анизол фенилируются примерно в три раза быстрее бензола, образуя о- и п-фенилпроизводные с некоторым преобладанием орто-замещенных. Эта специфика влияния заместителей при радикальном замещении объясняется тем, что стабильность радикального ст-комплекса зависит прежде всего от делокализации в нем неспаренного электрона. При этом и электроноакцепторные и электронодонорные заместители, находящиеся в орто- и лара-положе-нии к месту радикальной атаки, увеличивают делокализацию неспаренного электрона в ст-комплексе и тем самым повышают стабильность и облегчают его образование  [c.226]

    Почти нет сомнения, что если радикал может блть значительно стабилизован в результате делокализации неспаренного электрона, то три связи при этом углеродном атоме будут копланарны. Так, например, взаимодействие водородных атомов в орто-положениях бензольных колец трифенилметила хотя и препятствует расположению молекул в одной плоскости (см. стр. 278), тем не менее имеются все основания считать, что все три связи между центральным радикальным атомом углерода и фенильньши группами копланарны, поскольку выведение любой из этих связей из плоскости приведет к уменьшению возможности делокализации без какого бы то ни было компенсирующего уменьшения стерических затруднений. Бензольные кольца повернуты при этом иа некоторый угол по отношению к этой плоскости, подобно лопастям пропеллера, чтобы по возможности уменьшить стерические напряжения при минимальном уменьшении возможности делокализации вследствие нарушения копланарности. [c.285]

    Бартлетт [152] предложил различать по механизму термического распада пероксиэфиры R (0)00R двух типов. В пероксиэфирах первого типа радикал R не может существовать в виде относительно стабильного свободного радикала. В пероксиэфирах второго типа благодаря делокализации неспаренного электрона возможна стабилизация радикала R. [c.265]

    Осн. характеристики спектров ЭПР число линий, расстояния между ними (константы СТВ), относит, интенсииности линий и их ширины. По спектру ЭПР можно идентифицировать природу радикала. Для этой цели составлены атласы спектров ЭПР. По константам анизотропного и изотропного СТВ можно вычислять плотность неспарениого электрона на з- и р-орбиталях радикала, определять область делокализации неспарениого электрона и положения химически активных центров в радикале. Ширина и форма линий позволяют получить информацию о взаимод. частиц внутри в-ва, характере и скорости мол. движений и жидких и ТВ. телах (см. Парамагнитного зонда метод), внутри- и межмолекулярных обменных процессах, о структуре и конформации своб. радикалов, бирадикалов и частиц в триплетных состояниях (как основных, так и возбужденных). [c.702]

    Согласно данным табл. 11.3, по сравнению с катионной атакой монозамещенных бензолов фенильные радикалы атакуют очень неселективно. Можно ожидать, что некоторые заместители будут стабилизировать начальный аддукт-ради-кал. Однако канонические структуры теории резонанса показывают, что делокализация неспаренного электрона на атоме кислорода анизола (или атоме хлора хлоробензола) приведет к образованию диполя. Такие структуры, по-види- [c.106]

    Устойчивость И.-р. возрастает с увеличением степени делокализации неспаренного электрона. Наличие в молекуле электронодонорных групп (OR, NRj, R== R2 и др.) повыщает стабильность КР, акцепторных (NOj, N, OOR, SO2R, F3 и др.)-АР. Нек-рые соли И. р. выделены в твердом виде (см., напр., Металлы органические). [c.266]

    Стабильность Н.р. определяется степенью делокализации неспаренного электрона по связям заместителей и стерич. затруднениями вблизи атомов с высокой спиновой плотностью. Мн. ди-тре -алкилнитроксилы хранятся годами без разложения. Диалкилнитроксилы, имеющие а-Н-атомы, быстро диспропорционируют  [c.276]

    Это (вязано с тем, что у вторичных и третичных радикалов происходит частичное растфеделение - делокализация неспаренного электрона на два и три соседних атома углерода. [c.64]

    Из сравнения т/ ет-бугильного и кумильного радикалов видно, что делокализация неспаренного электрона резко снижает вероятность диспропорционирования. В то же время отношение ка/кс нарастает для алкильных радикалов в последовательности перв. < втор. < трет. Строгой концепции, описы-ваюшей количественно эту конкуренцию, нет. [c.258]


Смотреть страницы где упоминается термин Делокализация неспаренного электрона: [c.42]    [c.58]    [c.175]    [c.177]    [c.19]    [c.57]    [c.206]    [c.156]    [c.159]    [c.403]   
Курс химической кинетики (1962) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Делокализация

Делокализация электрона

Неспаренный электрон



© 2025 chem21.info Реклама на сайте