Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мицеллярный катализ

    В заключение отметим, что изменение степени сольватации и уменьшение энтропии при образовании переходного состояния — вот два важнейших фактора, ответственных за катализ и возрастание скорости в мицеллярных системах. В этом отношении последние напоминают ферменты. Другое формальное сходство мел<ду ферментативным и мицеллярным катализом заключается в сильном [c.293]

    Кинетическая теория мицеллярного катализа. Наблюдаемую скорость реакции [c.118]


    Физико-химические основы мицеллярного катализа изложены в [98]. [c.114]

    Может возникнуть вопрос следует ли включать в монографию по межфазному катализу мицеллярный катализ Где нужно провести границу Мицеллярным реакциям посвящено много обзоров [29—31]. Такие реакции обычно проводятся в гомогенных или псевдогомогенных фазах. Поэтому они не подходят под наше определение реакций МФК и, следовательно, здесь, как правило, не рассматриваются. Однако реакции МФК по определению, принятому в данной книге, могут происходить с механистической точки зрения в мицеллах или инвертированных мицеллах. Хотя это и не является типичной реакцией МФК и не существует достоверных примеров подобных реакций, некоторые указания на возможность протекания такого процесса имеются. [c.15]

    Как видно, свободная энергия переноса молекулы реагента из воды в мицеллярную фазу может практически полностью компенсировать предполагаемую потерю энтропии при включении молекулы общеосновного или общекислотного катализатора в переходное состояние реакции. Эта компенсация и обусловливает некоторое подобие механизмов ферментативного и мицеллярного катализа. В отличие от реакций высокого кинетического порядка, протекающих в результате взаимодействия низкомолекулярных реагентов непосредственно в растворе, в том и другом случае катализа почти отсутствует неблагоприятный инкремент свободной энергии активации, связанный с потерей поступательного и вращательного движений при включении в переходное состояние реакции дополнительной частицы. Разумеется, конкретный механизм этого явления в каждом из видов катализа несколько иной. В мицеллярном катализе имеет место рассмотренная выше компенсация энтропийных потерь за счет свободной энергии термодинамически выгодных ионных и гидрофобных взаимодействий реагента с мицеллой. В ферментативном катализе компоненты активного центра (злектрофильные и нуклеофильные группы) заранее связаны с белковой глобулой (как правило, химически) и обладают до- [c.122]

    Эффект ускорения в мицеллярном катализе [и, в частности, в реакции (3,17) с участием бензимидазола] имеет и другие причины, чем кажущийся сдвиг рКа ионогенного реагента. Это — концентрирование реагентов в мицеллярной фазе и влияние микросреды поверхностного слоя мицелл [98]. Рассмотрим этот вопрос подробнее на примере реакции п-го порядка [108]. [c.117]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]


    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    В последнее время все большее значение приобретает мицеллярный катализ, т. е. проведение синтеза в растворе ПАВ выше ККМ. Оказалось, что правильный выбор ПАВ может обеспечить увеличение скорости реакции от пяти- до тысячекратной, по сравнению с реакциями без мицелл. Кинетическая теория и механизмы мицеллярных эффектов в химических реакциях были разработаны в трудах советских и зарубежных ученых. [c.327]

    Ориентирование и концентрирование молекул солюбилизированных веществ в мицеллах может приводить к существенному изменению кинетики химического взаимодействия солюбилизированных молекул между собой и с другими веществами, растворенными в среде. В некоторых случаях солюбилизация сопровождается значительным увеличением скорости химического взаимодействия, что лежит в основе нового направления химической кинетики — мицеллярного катализа, развиваемого И. В. Березиным с сотр. и другими научными коллективами. Явление солюбилизации играет важную роль в процессах эмульсионной полимеризации непредельных углеводородов при синте- [c.234]

    Ориентирование и концентрирование молекул солюбилизированных веществ в мицеллах может приводить к существенному изменению кинетики химического взаимодействия солюбилизированных молекул между собой и с другими веществами, растворенными в среде, В некоторых случаях солюбилизация сопровождается значительным увеличением скорости химического взаимодействия, что лежит в основе нового направления химической кинетики — мицеллярного катализа. [c.281]

    Для случая мицеллярного катализа применима псевдофазовая кинетическая модель. [c.347]

    Несмотря на большое структурное сходство катализаторов межфазного переноса с поверхностно-активными веществами, они весьма различаются по каталитическому действию. Высокоэффективные катализаторы межфазного переноса обычно являются плохими поверхностно-активными веществами. Кинетические данные и способность ониевых солей ускорять реакции даже в неполярных средах подтверждают предположение, что суть их каталитического действия заключается не в образовании мицелл, а в создании каталитического цикла, включающего обмен ионами. Было показано [9], что реакция между 1-хлор-октаном и цианидом натрия катализируется как анионными поверхностно-активными веществами (например, додецилбен-золсульфонатом натрия), так и неионными поверхностно-активными веществами (например, продуктами реакции додеканола и тетрадеканола с 6 моль этиленоксида) однако скорости реакции при этом в 100—1000 раз ниже, чем при применении четвертичных аммониевых солей. Таким образом, мицеллярный катализ можно, конечно, рассматривать как межфазный, однако ои обладает своей спецификой и далее не будет обсуждаться в данной книге (см. обзоры [10—131). Отметим, однако, что, как правило, поверхностно-активные вещества тормозят реакции в двухфазной системе. Это, очевидно, связано с тем, что образование мицелл изменяет физические характеристики системы и, кроме того, большая часть поверхности раздела фаз занимается поверхностно-активным, веществом, что приводит к вытеснению катализатора межфазного переноса. Именно поэтому для каждой системы существует свой оптимальный размер катиона, когда он еще остается катализатором межфазного переноса, но уже не является поверхностно-активным веществом. [c.16]

    Различают гомогенный и гетерогенный катализ. При перво реагенты и катализатор находятся в одной и той же фазе, пр втором — в разных. Выделяют также промежуточные типы ката лиза — мицеллярный катализ (коллоидными частицами в жидко фазе), гетерогенно-гомогенный катализ (реакция начинается и поверхности твердого катализатора и продолжается в объеме). [c.56]

    В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия/толуол и краун-эфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно BU4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов. Как было показано раньше, при МФК возможна экстракция кислот в форме ионной пары R4N+X----HY [57]. Ранние работы, в которых рассматривалось кислотное МФК-омыление, оказались ошибочными [1202, 1348]. Однако недавно было описано мягкое и селективное расщепление трет-бутиловых эфиров, которое происходит при перемешивании с [c.250]


    Растворяющая способность мицелл важна и в тех случаях, когда количества растворяемого вещества малы (на одну мицеллу приходится всего лишь несколько молекул). Мицеллярные растворы дают возможность оценивать кислотно-основные или электрохимические свойства соединений, нерастворимых другими способами. Они делают возможным проведение определенных химических процессов, связанных с мицеллярным катализом. Мицеллы обеспечивают транспорт нерастворимых образцов через неблагоприятную в других случаях фазу раствора. Так, например, с помощью мицелл транспорт веществ может быть использован для ускорения созревания и роста кристаллов, которые могут быть желательным или нежелательным побочным эффектом присутствия избытка ПАВ в метастабильной и многофазной системе. Мицеллы играют важнейшую роль в эмульсионной полимеризации (раздел 5.8.5). Все эти особенности существенны на начальном этапе растворения основных химических агентов, нерастворимых иными способами. [c.166]

    Как было замечено выше, мицеллярный катализ — это та область применения, в которой растворение реагента в мицелле является первым важным этапом. В первом приближении результаты мицеллярного катализа могут быть охарактеризованы с точки зрения двух составных частей. Первой является локализация реагента, как результат благоприятного равновесия при разделении, в месте, где реагент или реагенты концентрируются в мицелле, таким образом повышая частоту взаимодействия (столкновений) между реагентами. Вторая составная часть — эффект среды (поля) или эффект растворителя, в котором катализируемая реакция протекает более успешно вследствие тонкого влияния химического окружения мицеллярной среды на переходное состояние данной реакции. Из этих двух составляющих первая, безусловно, является наиболее часто встречающейся и хорошо изученной. [c.166]

    Однако в некоторых случаях мицеллярный катализ может наблюдаться. Например, аликват 336 (метилтриоктиламмонийхлорид) является очень эффективным липофильным МФ-катализатором (см. ниже). Сам по себе он мицеллы не образует. В водных растворах в отсутствие органических растворителей он суш,ествует в виде масляной суспензии. Однако, если добавить в смесь какой-либо неионный мицеллообразующий агент (например, полиоксиэтиленгликоль), аликват уходит внутрь или на поверхность неионной мицеллы. Образующийся таким способом катализатор оказывается очень эффективным во многих процессах [39]. В воде при очень низких концентрациях (10 —10 М) аликват 336 образует самоассоциаты. И хотя они существенно меньше, чем обычные глобулярные мицеллы, они катализируют нуклеофильный гидролиз и реакции декарбоксилирования 40]. Совершенно ясно, что механизм гидролиза нуждается в дальнейшем тщательном изучении. [c.66]

    Гидролиз чистого а,а,а-трихлортолуола (С) до бензойной кислоты в 20%-ном водном растворе гидроксида натрия при 80 °С сильно ускоряется добавлением 0,01 М гексадецилтриме-тиламмонийбромида или в меньшей степени 0,006 М нейтрального ПАВ — брий 35. С 0,02 М Ви4Н+Вг эта реакция шла хуже [475]. Разбавление С бензолом при использовании катионного ПАВ увеличивает время реакции в И раз. Авторы интерпретируют эти данные как косвенное, хотя и не точное, доказательство эмульсионного или мицеллярного катализа, а не истинного МФК-процесса. [c.245]

    Фендлер E., Фендлер Дж. Мицеллярный катализ в органических реакциях кинетика и катализ. — В кн. Методы и достижения в физико-органяческой химии Пер. с англ.—М. Мир, 1973. [c.462]

    Наглядным примером мицеллярного катализа [164] служит ацилоиновая (бензоиновая) конденсация в присутствии Ы-лаурил-тиазолийбромида (разд. 7.3)  [c.289]

    Однако наклон прямой б, соответствующей мицеллярной реакции, несколько меньше, чем в случае ферментативного процесса (пунктир). Это связано с тем, что алкоксильный анион в мицелле расположен в гидратированном поверхностном слое (а это снижает эффективность гидрофобного взаимодействия). Действительно, если нуклеофил несколько углублен в мицеллу, что происходит в случае бензимидазольного аниона [ПО], то специфичность мицеллярного катализа (точки на пунктире) вполне соответствует ферментативному (пунктир). Различия в константах скоростей реакций с участием наименее (ацетат) и наиболее гидрофобногЬ (гептаноат) субстратов превышают два порядка (рис. 29). [c.121]

    Совсем по-другому обстоит дело с реакциями, протекающими на мицеллах. Если реагент способен сорбироваться на мицелле, то увеличение кинетического порядка реакции приводит к большей эффективности мицеллярного катализа [см. уравнение (3.22)]. Иными словами, при включении в реакцию дополнительного реагента (например, общеосновного или общекислотного катализатора) следует ожидать, что эффективное значение свободной энергии активации реакции, протекающей при оптимальной Концентрации детергента, понизится по сравнению со свободной энергией реакции, идущей в воде (в отсутствие ПАВ), примерно на величину ЯТХпР, т. е. на величину 3—5 ккал/моль (12,6—21 кДж/моль) (при Р 10 —10 и Т 300 К). Это понижение эффективного значения свободной энергии активации обусловлено тем, что переход молекулы реагента из воды (исходное состояние) в переходное состояние, находящееся в мицеллярной фазе, термодинамически более выгоден, чем переход этой же молекулы в тождественное переходное состояние реакции, идущей в воде. [c.122]

    В последние годы все большее внимание привлекает эффект мицеллярного катализа [28] — ускорение или замедление органических реакций в результате солюбилизации реагентов (Или одного из них) мицеллами коллоидного ПАВ. Таковы, например, реакции гидролиза и сольволиза сложных эфиров, ацеталей, ортоэфиров, некоторые реакции замещения соединений алифатического и ароматического рядов. Увеличение константы скорости реакции при протекании ее в мицеллах может достигать 1—2 порядков по сравнению со скоростью реакции в воде. [c.85]

    Мицеллярный катализ проявляется и в процессах эмульсионной полимеризации. Как показал А. А. Шагинян, попадание инициатора, солюбилизированного в мицеллах, в сильное электростатическое поле диссоциированнык поляряыос гругап эмульгатора приводит к увеличению скорости инициирования полимеризации. [c.86]

    Применение ПАВ, а также электролитов позволяет эффективно управлять процессами вознииювения и разрушения дисперсных систем, регулировать их устойчивость, структурно-механические и другие свойства. ПАВ участвуют в самых разнообразных микрогетерогенных химических, биохимических, физиологических процессах, таких, как мицеллярный катализ, явления обмена, проницаемость мембран и т. д. Управление устойчивостью всевозможных дисперсньсх систем лежит в основе многих технологических процессов. [c.9]

    Однако необходимо отметить, что переход органических молекул в водную фазу (всаливание) может привести в конечном итоге к так называемому мицеллярному катализу вследствие образования мицелл под действием поверхностно-активных веществ и повышения концентрации реагирующих веществ внутри мицеллы. Эту возможность следует учитывать, поскольку многие ониевые соли являются поверхностно-активными веществами. В том случае, когда в молекуле ониевой соли имеется одна или две длинноцепочечные группы, мицеллообра-зование наступает довольно быстро. Так, найдено [8], что для [c.15]

    При гомогенном катализе катализатор и реагирующие в-ва находятся в одной фазе в молекулярно-дисперсном состоянии. При гетерогенном катализе катализатор образует самостоят. фазу, отделенную границей раздела от фазы, в к-рой находятся реагирующие в-ва. Выделяют таюке гетерогеиио-гомогенный К., при к-ром р-ция начинается иа пов-сти твердого катализатора, а затем продолжается в объеме. Межфазным катализом принято называть К. на границе двух несмешивающихся жидкостей при этом роль катализатора состоит в переносе реагентов между фазами. Промежут. положение между гомогенным и гетерогенным К. занимает микрогетерогенный К. коллоидными частицами в жидкой фазе. Ускорение р-ций в присут. мицелл ПАВ наз. мицеллярным катализом. Исключительную роль в процессах в живых организмах играет ферментативный катализ, обусловленный действием ферментов. [c.335]

    МИЦЕЛЛЯРНЫЙ КАТАЛИЗ, ускорение хим. р-ций в присут. мицелл ПАВ. Обусловлен гл. обр. изменением концентрации реагирующих в-в при переходе реагентов из р-ра в мицеллы для р-ций с участием диссоциирующих частиц существенно также влияние мицелл ПАВ на константу скорости и сдвиг равновесия диссоциации молекул реагентов. Наиб, корректное описание М. к. дает псевдодвухфазная модель, к-рая рассматривает наблюдаемую скорость р-ции как сумму скоростей процессов в фазе р-рителя (воде или неводной среде в случае обращенных мицелл) и мицеллярной псевдофазе, характеризуемых соотв. константами скоростей / j и к . Распределение реагентов А, В,. .. между мицеллами и р-рителем описывается с помощью констант Рх = [A] /[A]j, Рв = [В] [В]ь, где [А] -концентрация в-ва в мицеллярной псевдофазе, [А] -концентрация в-ва в р-рителе. Для наиб, распространенного случая бимолекулярной р-ции типа А + В - продукты, наблюдаемая константа скорости второго порядка равна [c.97]

    Новые направления исследования П. я. и их использование связаны с развитием микроэлектроники, космонавтики, биотехнологии, мицеллярного катализа, с разработкой биомембран, применением порошковой металлургии, произ-вом тромборезистентных материалов, глазных линз и пр. В настоящее время проводят исследования П. я. в экстремальных условиях-при высоких т-рах и давлениях, в глубоком вакууме, вблизи абс. нуля т-р, при большой кривизне пов-сти жидкости, в условиях интенсивных внеш. воздействий (вибрации, сильных электрич. и магн. полей, ионизирующих излучений и т. п.). Существ, внимание уделяется изучению кинетич. закономерностей П. я., что необходимо для выяснения их мол. механизмов. [c.591]

    Мицеллярный катализ представляет собой особый тип катализа. Известно, что мицеллы, образованные ПАВ при достаточно высоких концентрациях в вод-нсми растворе, способны изменять скорость хямических реакций в результате того, что реагирующие компоненты притягиваются к поверхности мицелл, и вызванный этим эффект концентрирования приводит к более быстрой реакции. Реагенты могут взаимодействовать с мицеллами различными путями находиться внутри их гидрофобной оболочки, адсорбироваться в поверхностном слое за счет электростатических взаимодействий и т. д. Несмотря на то что концентрация мицелл не меняется в ходе реакции, мицеллы не являются катализаторами в строгом смысле, так как они не участвуют ни в какой стадии реакции и каталитических циклах. Таким образом, данный эффект имеет скорее физическую, а не химическую природу. [c.347]

    Эффективность мицеллярного катализа oцeнивaJoт как соотношение межд>-скоростью реакции в присутствии и в отсутствие мицелл, зависящее от двух факторов согласно следующему выражению  [c.348]

    Функциональные мицеллы не относятся к числу наиболее известных примеров мицеллярного катализа, главным образом потому, что заряженные концевые группы обычных детергер1тов представляют собой сопряженные основания сильных кислот нли тетраалкнламмониевые катионы, в силу чего их реакционная способность ниже, чем у нуклеофилов или общих оснований. Анионная мицелла (см. рис. 24.1.15) может катализировать реакции специфического кислотного катализа, такие как гидролиз ацеталей ил и ортоэфиров с гидрофобными группами, путем связывания субстрата таким образом, что полярная функциональная группа [c.507]

    Таким образом, налицо явная близость механизмов связывания и катализа мицеллами и ферментативных реакций эта близость распространяется и на кинетику, которая в большинстве случаев мицеллярного катализа подчиняется механизму Михаэ-лиса-Ментена. Последний факт объясняется насыщением мицеллы субстратом. Катализ водными мицеллами, однако, обычно не слишком эффективен, скорость реакции редко увеличивается более чем в 100 раз. Степень субстратной специфичности также относительно мала. Все это объясняется тем, что связывающие взаимодействия сами относительно слабы и неспецифичны. В связи с этим одной из важнейших целей современных исследований [c.508]

    Мицеллярный катализ оказывает сильное влияние на скорости реакций. Мицеллы — это агрегаты с большим содержанием молекул мыла или детергента, довольно рыхло связанные преимущественно за счет гидрофобных (неполярных) взаимодействий. При увеличении концентрации детергента в водном растворе происходит постепенное изменение физико-химических свойств раствора поверхностного натяжения, плотности, pH и электропроводности. Однако наступает такой момент, когда изменения перестают быть плавными и при небольшом увеличении концентрации детергента какое-либо из свойств раствора резко меняется. Концентрация детергента, при которой наступает такой скачок, называется критической концентрацией ми-целлообразования (ККМ). Мицеллы обычно образуются в водном растворе полярные и неполярные группы находятся соответственно на поверхности и внутри мицелл. Известны и обращенные мицеллы, т. е. агрегаты поверхностно-активных веществ в неполярных растворителях, в которых полярные и неполярные группы расположены соответственно внутри и на поверхности мицелл. За счет неполярных взаимодействий мицеллы связывают множество органических субстратов, что приводит к ускорению химических реакций (или порой к их замедлению). Катализируемые мицеллами реакции обычно протекают на поверхности мицелл. Более того, мицеллярный катализ носит определенные ферментоподобные черты например, кинетика мицеллярных процессов подчиняется уравнению Михаэлиса— Ментен, и катализ характеризуется заметной стереоспецифичностью. Все это указывает на то, что мицеллы можно использовать для моделирования ферментативного катализа [22]. [c.337]

    Однако роль ПАВ не ограничивается только концентрационным эффектом. При серной вулканизации СКИ-3, ускоренной диэтилдитиокарбаматом цинка и сульфенамидом Ц, отметили, что энергия активации вулканизации в присутствии неионогенных ПАВ остается такой же, как и в системе без ПАВ (113— 122 кДж/моль), а при введении ионогенных ПАВ — снижается (с цетилпи-ридинийхлоридом до 88—92 кДж/моль, а с олеатом калия до 67—71 кДж/моль). Снижение кажущейся энергии активации расхода серы в присутствии ионогенных ПАВ связано с образованием координационных или даже химических связей между ДАВ и полярными группами молекул ПАВ и ускорением вследствие этого реакций между ДАВ и каучуком. Следовательно, для серной вулканизации в присутствии ПАВ характерны все черты мицеллярного катализа. [c.246]


Библиография для Мицеллярный катализ: [c.125]   
Смотреть страницы где упоминается термин Мицеллярный катализ: [c.10]    [c.119]    [c.85]    [c.214]    [c.14]    [c.652]    [c.347]    [c.371]    [c.226]    [c.243]   
Смотреть главы в:

Химия протеолиза Изд.2 -> Мицеллярный катализ


Курс коллоидной химии 1984 (1984) -- [ c.327 ]

Курс коллоидной химии 1995 (1995) -- [ c.361 ]

Курс коллоидной химии (1984) -- [ c.327 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Бифункциональный мицеллярный катализ

Катализ мицеллярный комплекс

Мицеллярный

Мицеллярный катализ в водных средах

Мицеллярный катализ в водных средах бензидиновая перегруппировка

Мицеллярный катализ в водных средах бифункциональный

Мицеллярный катализ в водных средах восстановление

Мицеллярный катализ в водных средах гидролиз диэтилацеталя нитробензальдегида, кислотный катализ

Мицеллярный катализ в водных средах диспропорционирование ион-радикалов

Мицеллярный катализ в водных средах лазерный фотолиз дурохинона

Мицеллярный катализ в водных средах окисление карбоната

Мицеллярный катализ в водных средах радиационное перекисное окислени

Мицеллярный катализ в водных средах радиационные окислительно-восстановительные реакции

Мицеллярный катализ в органических реакциях кинетика и механизм Фендлер, Дж. Фендлер

Мицеллярный катализ реакций гидролиза и сольволиза

Основы мицеллярного катализа органических реакций

Реакции а мицеллах и мицеллярный катализ в неводных средах

Реакции в мицеллах и мицеллярный катализ в водных средах

Теория мицеллярного катализа



© 2025 chem21.info Реклама на сайте