Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение молекул физические методы исследования

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    Применение ЯМР-спектроскопии не ограничивается установлением или же подтверждением химического строения молекул. ЯМР дает возможность решать ряд проблем стереохимии, количественного анализа смесей, кинетики и механизмов быстрых химических реакций, в том числе протонного обмена, таутомерных превращений и другие вопросы. Целые разделы органической и неорганической химии обязаны своим стремительным развитием именно применению спектроскопии ЯМР- Данные спектров ЯМР считаются такими же надежными критериями в оценке структуры, в распознавании и отождествлении химических соединений, как и сведения других физических методов исследования. [c.10]

    Информацию о строении вещества можно получить, исследуя его физические и химические свойства. В частности, с помощью физических методов исследования определяют основные параметры молекул — межъядерные расстояния, валентные углы и геометрию молекул. [c.42]

    Имеются все основания полагать, что в будущем физические методы исследования станут играть решающую роль при установлении строения химических соединений, а центр тяжести работы химика еще более переместится в сторону изучения процессов превращения молекул. [c.21]

    Поскольку обычно занятия по практическому использованию физических методов структурного анализа следуют после лекционных курсов по молекулярной спектроскопии, физическим методам исследования и после вводного практикума по спектроскопии, происхождение и основы теории молекулярных спектров, зависимости физических свойств от строения молекул и техника молекулярной спектроскопии студентам уже известны и здесь не излагаются. [c.3]

    Физическими методами исследования установлено, что бензольное кольцо имеет симметричное плоскостное строение с одинаковыми расстояниями между атомами углерода. Диноль-ный момент молекулы бензола равен нулю. [c.320]

    В результате этого спектр веш,ества в инфракрасной области дает сразу много сведений о наличии в веществе различных химических групп. Например, наличие атома кислорода в органическом соединении может означать присутствие в его составе спиртовой ОН, эфирной С — О — С, альдегидной, карбоксильной группы и ряда других. Чтобы установить наличие или отсутствие каждой из этих групп химическими методами, надо провести целую серию химических реакций, типичных для группы каждого типа. С помощью ИК-спектра этот вопрос решается сразу. Поэтому ИК-спектроскопия — один из важнейших физических методов исследования строения сложных молекул. [c.156]


    В настоящее время инфракрасная спектроскопия стала одним из основных физических методов исследования в химии, с помощью которого можно решать задачи качественного и количественного анализа вещества и судить о строении молекул. Особенно широко используется инфракрасная спектроскопия в органической химии для структурно-группового анализа и идентификации самых различных соединений. При совместном рассмотрении инфракрасных спектров со спектрами комбинационного рассеяния, ультрафиолетовыми спектрами, спектрами ядерного магнитного резонанса и масс-спектрами можно определять строение и состав большинства органических соединений. Благодаря простоте и автоматизации получения спектров метод инфракрасной спектроскопии нашел широкое применение в научных лабораториях и служит надежным методом контроля на химическом производстве. [c.5]

    Строение молекул изучают физическим и химическим методами. Из физических свойств наибольшее значение имеют погло-ш,ение и отражение различных излучений (рентгеновские, электронные, нейтронные лучи), спектры поглощения и испускания широкого диапазона частот, магнитные и электрические взаимодействия (магнитная восприимчивость и проницаемость, электрические моменты диполей и поляризация), механические, тепловые, электрические и др. Для заключения о строении вещества сопоставляют информацию, полученную разными методами. Рассмотрим некоторые физические методы исследования. [c.63]

    Важную часть этого раздела составляет учение об агрегатных состояниях вещества, в котором рассматриваются взаимодействия молекул в газах, жидкостях и кристаллах, а также свойства веществ в различных агрегатных состояниях. Разработка и широкое применение физических методов исследования веществ рентгеноструктурного, электронографического, электронномикроскопического, оптического и других методов позволило получить ценные данные о строении жидкостей, а также твердых тел, как в кристаллическом, так и в аморфном состояниях. [c.7]

    В последние десятилетия новые физические методы исследования строения молекул подтвердили правильность представлений стереохимической гипотезы, и в настоящее время эти представления развились в стройную и плодотворную стереохимическую теорию. [c.24]

    В момент своего создания тетраэдрическая модель была лишь гипотезой, гениальной догадкой. Развитие физических методов исследования, прежде всего рентгеноструктурного анализа, дало стереохимическим представлениям прямое экспериментальное обоснование. Стоит подчеркнуть, что химики своими методами создали правильные представления о пространственном строении молекул еще в то время, когда с физической стороны не было видно никаких подходов к этому вопросу. Первоначальные физические исследования строения органических молекул лишь подтверждали то, что уже давно было принято в химии. Это наглядно демонстрирует огромную предсказательную силу бутлеровской теории химического строения, дополненной стереохимическими идеями Вант-Гоффа. [c.36]

    Использование новых физических методов исследования позволило существенно углубить представления о пространственном строении молекул, позволило подметить новые, ранее неизвестные особенности. Важнейшим из них оказалось возникновение понятия о поворотной изомерии (конформации) органических молекул. Это представление легло в основу истолкования большинства наблюдений, сделанных как в области статической, так и в области динамической стереохимии. [c.85]

    Современная химия для изучения строения соединений использует комплекс химических методов. Широко применяются также физические методы исследования, которые позволяют определить не только химическое, но и пространственное расположение атомов в молекуле. [c.296]

    Заметим также, что в имеющихся советских и зарубежных справочных изданиях еще недостаточно полно отражены сведения из бурно развивающейся области физических методов исследования строения и свойств молекул, и в этом отношении Спутник химика удачно восполняет образовавшийся пробел. [c.5]

    Физические методы исследования строения органических молекул. I см. стр. 341.. [c.589]

    Во времена возникновения структурной теории А. М. Бутлерова бьша осознана важная истина о том, что строение молекулы определяет все ее химические свойства и по сумме химических свойств можно сделать верное заключение о структуре вещества. Эта истина ни в коей мере не потеряла своего значения в век физических методов исследования. Постоянными в химии остаются анализ и синтез, которые составляют, как известно, основу мыслительного процесса, основу всякого познания. Синтезируя все более и более сложные вещества, химик наперед знает исходные фрагменты, из которых формируется структура нового соединения. Поэтому он предполагает структуру заранее. После синтеза остается только ее доказать. [c.101]


    Современная органическая химия широко использует физические методы исследования для изучения строения молекул органических соединений. [c.5]

    Спектрофотометрия — физический метод исследования, основанный на измерении спектров поглощения в УФ (200—400 нм), видимой (400-700 нм) и ИК (> 760 см ) областях спектра. В спектрофотометрии изучается зависимость интенсивности поглощения светового потока от длины волны. Находит широкое применение для изучения строения и состава молекул, для качественной идентификации и количественного анализа веществ. Измерения производят на приборах, называемых спектрофотометрами. [c.278]

    Одной из главнейших задач современной науки является изучение строения и свойств многоатомных молекул. В последние два десятилетия наряду с традиционными химическими методами все большее, а иногда и решающее значение приобретают различные физические методы исследования, в частности, методы, основанные на изучении энергетических уровней многоатомных молекул. К этим методам относятся методы электронной, колебательной и вращательной спектроскопии, электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и др. Одно из основных преимуществ этих методов заключается в возможности изучения молекул и молекулярных ассоциатов в любом агрегатном состоянии, при разных температурах и давлениях и без разрушения молекул, как это обычно имеет место при применении химических методов. [c.168]

    Учитывая современное состояние методов анализа сераорганических соединений, следует отметить, что для надежного определения состава сложной смеси нефтяных меркаптанов, сульфидов и тиофенов необходимо сочетание эффективных химических и физических методов исследования. Физические методы исследования, используемые в настоящее время для изучения строения и состава сераорганических соединений, многочисленны, но наиболее перспективными среди них являются методы молекулярной спектроскопии и масс-спектрометрии [10]. Основные преимущества этих методов — высокая чувствительность к структурным особенностям молекул и точность. Однако успешное использование данных методов возможно лишь при четком разделении смеси по структурным признакам. [c.50]

    Ш. Жерар (1816—1856), основатель теории типов, а также его последователи считали, что структура молекул не может быть установлена путем изучения реакций вещества, так как молекула в реакции изменяется, становится иной. По их мнению, изучая химические свойства вещества, можно установить только его прошлое и будущее, но не настоящее. Правда, они допускали, что физические методы исследования в будущем дадут возможность определять строение молекул. Однако в то время физические методы исследований были крайне слабо развиты, и подобная постановка вопроса была равносильна отказу от исследования структуры молекул. [c.6]

    Физические методы исследования дают весьма ценные результаты также в тех случаях, когда приходится устанавливать тонкие различия в ха рактере связей между атомами вещества, которые обусловливают характерные различия в реакционной способности, наблюдаемые, например, в ароматических молекулах и в молекулах с сопряженными связями. Успех физического исследования в этих случаях обусловлен главным образом тем, что молекула в ходе такого исследования не изменяется, сохраняет свое строение. [c.14]

    В последние десятилетия значение физических методов исследования чрезвычайно возросло вследствие успехов, достигнутых в теоретическом обосновании зависимости между строением и физическими свойствами. Возникшие новейшие физические методы исследования органических соединений (определение дипольных моментов, рентгенография, электронография, спектроскопия и др.) значительно углубили наши представления о строении органических молекул и тем самым существенно обогатили теорию химического строения. [c.14]

    Накопление нового фактического материала в органической химии, применение новейших физических методов исследования и использование квантово-механических методов изучения строения молекул привели к обогащению и развитию бутлеровского понятия химического строения, включающего в себя в настоящее время не только порядок химической связи атомов, но и конфигурацию молекулы. При таком понимании химического строения основное положение теории химического строения, согласно которому химические свойства молекулы определяются ее составом и химическим строением, полностью остается в силе. [c.50]

    К другому. Если вычислить энергию образования какого-либо другого углеводорода как сумму найденных ранее величин энергии связей С—С и С—Н, а затем определить эту энергию экспериментальным путем, получается хорошее совпадение обоих результатов. Это показывает, что энергия связей обладает свойством аддитивности. Отклонения от аддитивности, особенно часто наблюдаемые в случае молекул, содержаш,их сопряженные двойные связи, указывают на определенные особенности в химическом строении таких молекул. Выяснение характера этих особенностей производится путем совместного применения различных химических и физических методов исследования. [c.537]

    В настоящее время широко применяются физические методы исследования для определения строения органических молекул рентгеноструктурный анализ, структурная электронография, инфракрасная спектроскопия, комбинационное рассеяние света, дипольные моменты, электронные спектры поглощения, электронный парамагнитный резонанс, ядерный магнитный резонанс. Теория химического строения раскрыла неисчерпаемые возможности для синтеза разнообразных органических веществ с заранее заданными свойствами. [c.306]

    Сочетание синтеза и физических методов исследования позволило полностью расшифровать состав и строение углеводородов, входящих в бензиновые фракции нефти. Однако по мере повышения температуры кипения (свыше 150—160°), т. е. при переходе к керосиновым и масляным фракциям, углеводородный состав значительно усложняется, не только за счет увеличения числа изомеров, но и в связи с появлением новых типов углеводородов более сложной структуры. Эти соединения характеризуются наличием в молекуле нескольких циклов — ароматических, либо нафтеновых, либо тех и других вместе. Кроме того, циклы могут содержать парафиновые цепи. Исследование состава таких многокомпонентных смесей представляет большие экспериментальные трудности, что является основной причиной их малой изученности. [c.180]

    Автор знакомит читателя с теоретической стороной сложных пространственных коллизий углеводных молекул, рассматривая их строение, конфигурацию и конформацию, а также специфические для углеводов явления, подобные аномерному эффекту. Большое внимание в книге уделено физическим методам исследования пространственных характеристик молекул сахаров, использованию в этих целях рентгеноструктурного анализа, масс-спектрометрии, ИК-спектров, дипольных моментов, оптического вращения и, что особенно существенно, метода ЯМР, который находит Все большее применение в химии углеводов. [c.5]

    Пособие составлено а соответствии с программой по физической химии для химических специальностей химико-техвологических вузов и факультетов. В нем подробно изложены основные разделы курса физической химии квантовоиеханические основы теории хниическоЗ связи, строения атомов и молекул, спектральные методы исследования молекулярной структуры, феноменологическая в статистическая термодинамика, термодинамика растворов н фазовых равновесий, электрохимия, химическая кинетика, гомогенный н гетерогенный катализ. [c.2]

    Следует четко отличать эти обозначения ядерных спиновых систем от аналогичных по виду общих по типу формул двухатомных и многоатомных молекул (например, АВ, АХг, АХ4, АХУа и т. д.), широко используемых в других главах учебника, как и вообще в литературе по строению молекул и физическим методам исследования. [c.22]

    Нельзя не отметить, что, изучая строение неизвестного соединения, исследователь и ныне в сжатом виде, как бы вновь пробегает пройденные историей ступени познания. Он уста- навливает индивидуальный характер вещества, что невозможно без исследования его свойств (температур кипения и плавления, растворимости, хроматографических характеристик, цветных, а иногда и иммунологических реакций). Затем определяется элементарный состав соединения. На этой основе развертываются работы по установлению строения молекулы физическими и химическими методами определяются отдельные функциональные группы и радикалы. На этой стадии соединение нередко изображает- [c.12]

    Для современной органической химии при решении структурных проблем все большее значение приобретают физические методы исследования. Теплоты сгорания, парахор, дипольные моменты, изучение кинетики, магнитная проницаемость, метод меченых атомов, константы хроматографии и электрофореза, скорость осаждения при центрифугировании, люминесцентный анализ, нефелометрия, по-ляриметрия, масс-спектроскопия, рентгеноструктурный анализ, но особенно, — спектроскопия в видимой, инфракрасной, ультрафиолетовой областях, изучение спектров электронного парамагнитного и ядернОго магнитного резонанса открыли необыкновенно широкие возможности для решения задач установления строения молекул. Физические исследования все чаще оказываются решающими для понимания структуры соединения. [c.19]

    Место ЯМР-спектроскопии среди других физических методов исследования и ее значение в химии. ЯМР-спектроскопия заняла достойное место рядом с другими физическими методами исследования, например, инфракрасной спектроскопией. Как правило, эти методы не заменяют, а взаимно дополняют друг друга. Тем не менее следует особо подчеркнуть, что ЯМР-спектроскопия может часто служить источником такой Информации о структуре химических соединений, которая другими методами получается лишь с огромным трудом или вообще была недоступна. еперь во многих случаях химик-органик, взглянув на спектр ЯМР, может быстро решить, получил ли он то, что задумал. Раньше такой вывод удавалось сделать лишь после долгих недель или месяцев кропотливой работы. Это было и остается одной из причин небывалой популярности ЯМР-спектроскопии. В настоящее время контроль за синтезом новых соединений часто осуществляется с помощью метода ЯМР. Связь химической структуры со спектрами ЯМР отли-чаетсисключительно высокими темпами, быстро получила признание и в настоящее время занимает ведущее место среди физических методов определения строения молекул. [c.6]

    Химические и физические методы изучения Молекул. В создании правильных представлений о строении и свойствах молекул химические методы исследования играют главную роль. На основании элементарного анализа устанавливается эмпирическая формула вещества, а строение подтверждается в ходе исследования характерных для данного вещества химических реакций. Наряду с химическими методами исследования все большее значение приобретают физические методы. Их широкое использование обусловлено рядом преимуществ, например, физические методы, как правило, не вызывают каких-либо изменений в строении молекул изучаемых веществ, они значительно сокращают время и путь исследования. Когда же устанавливаются тонкие различия в структуре молекул (различия в характере связей, реакцрюнной способности групп и атомов, внутримолекулярные превращения и т. п.), физические методы оказываются незаменимыми и единственно возможными методами изучения. В химии используется большое количество физических методов, основанных на зависимости разнообразных физических (электрических, оптических, магнитных и др.) свойств от химической структуры молекул. Ниже в краткой форме рассматривается сущность ряда наиболее разработанных физических методов и их применение для изучения строения молекул. [c.36]

    Бензол СбНб—простейший из огромного количества высоконенасыщенных циклических или полициклических углеводородов, химическое поведение которого отлично от поведения алкенов и носит название ароматичность . Строение бензола долгое время оставалось загадкой, которая сегодня полностью разрешена. Физические методы исследования (например, рентгеноструктурный анализ кристаллов бензола) показали, что молекула бензола представляет собой правильный плоский шестиугольник, образованный атомами углерода, каждый из которых связан с атомом водорода. Длины всех связей С—С в этой структуре равны. Симметричность молекулы бензола согласуется со многими исследованиями, где была установлена полная химическая эквивалентность всех атомов углерода (иными словами, для монозамещенных производных бензола не наблюдается изомерия положения заместителя). [c.47]

    Физическими методами исследования доказано, что строение молекулы этилена отличается тем, что в ней имеется 5 а-связей, расположенных в одной плос1 сти, и одна так называемая я-связь (пи-связь), которая также соединяет два углеродных атома  [c.42]

    Структура (от латинского stra tura - строение, расположение, порядок) - совокупность устойчивых связей объекта, обеспечивающих его целостность и тождественность самому себе, т.е. сохранение основных свойств при различных внутренних и внешних изменениях. Специфика аналитических задач, обусловленная развитием синтеза и анализа соединений, в том числе и высокомолекулярных, определяется [12] высказьшанием А.П. Терентьева, сделанным в 1966 году Органический анализ призван решать весьма различные задачи, и первейшая из них - установление строения соединений. .. Следующий этап - выяснение формы, в которой данный элемент присутствует в соединении, т.е. [надо] найти его функциональные группы и их относительное содержание в молекуле. Эти знания, однако, также могут оказаться недостаточными, и поэтому требуется выяснить относительное положение различных функциональных групп. Иначе говоря, исследователь химического строения должен быть грамотным и изощренным аналитиком, владеющим всей совокупностью химических и физических методов исследования . [c.15]

    Афанасьев В.А. Физические методы исследования строения молекул органических соединении. "Клшл", Фрунзе, 1968. [c.340]

    Жерар счктзл, что строение молекул можно определить только с помощью физических методов исследования, при которых молекулы не претерпевают изменений. Поскольку в то время физические методы находились в зачаточном состоянии, решение кардинальной для органической химии задачи определения строения молекул откладывалось тем самым на неопределенно длительное время. [c.55]


Смотреть страницы где упоминается термин Строение молекул физические методы исследования: [c.5]    [c.63]    [c.25]    [c.178]    [c.53]    [c.10]   
Волокна из синтетических полимеров (1957) -- [ c.20 , c.206 , c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Метод Молекулы

Методы физические

Молекула строение

Физическое исследование



© 2025 chem21.info Реклама на сайте