Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия электронного парамагнитного резонанса (метод ЭПР)

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    Спектроскопия электронного парамагнитного резонанса (ЭПР) применяется. 1ЛЯ исследования парамагнитных молекул, т. е. молекул с неспаренными электронами (свободные радикалы, ион-радикалы и т. д.). Метод ЭПР основан на тех же принципах, что и метод ЯМР. Однако в случае ЭПР регистрируется резонансное но1лощение электромагнитных волн электронами (а не ядрами), имеющими нескомпенсированные магнитные моменты. [c.509]

    Химические процессы, происходящие при пиролизе древесины, очень сложны и до конца еще не исследованы. Процесс пиролиза древесины и ее компонентов изучают с помощью различных инструментальных методов термического анализа [30]. Для идентификации и количественного определения продуктов термической деструкции используют различные хроматографические методы. При изучении механизма деструкции широко применяют метод спектроскопии электронного парамагнитного резонанса (ЭПР), а для исследования изменений химической и физической [c.354]

    Если атом или молекула имеет один неспаренный электрон, магнитный момент частицы равен магнитному моменту электрона 1= /Т. Измерение парамагнитной восприимчивости позволяет обнаружить свободные радикалы, установить число неспаренных электронов в частице и т. п. Особенно большое значение для подобных исследований приобрел метод спектроскопии электронного парамагнитного резонанса (ЭПР). [c.43]

    При любом движении электрического заряда возникает магнитное-поле. Не представляет исключения и спин электрона — электрон создает магнитное поле, соответствующее магнитному моменту, который должен быть у вращающегося отрицательного заряда электричества. Вращающийся электрон можно представить себе как крошечный магнит, который может ориентироваться в магнитном поле таким образом, что составляющая момента количества движения, имеющая направление вдоль поля, равна -Ьцв или —цв, где цв —магнетон Бора = 0,927- 10- Дж-Т- (джоуль тесла- = 10 эрг - гаусс" ). Спин электрона в магнитном поле может измениться и приобрести отрицательную ориентацию вместо положительной, если электрон поглотит микроволновое излучение, имеющее соответствующую частоту. На этом основан метод электронно-спиновой резонансной спектроскопии (электронного парамагнитного резонанса, ЭПР) после 1945 г. этим методом получена огромная информация об электронных структурах. [c.111]

    Физическим фундаментом популярных в науке методов спиновых меток, парамагнитных зондов и радикальных ловушек является спектроскопия электронного парамагнитного резонанса, а химической основой служат нитроксильные радикалы и нерадикальные реакции свободных радикалов. Данный сборник и освещает эти аспекты химии и применения стабильных нитроксильных радикалов. [c.4]


    Наиболее детально развитие разрушения изучено прямыми структурными методами в твердых полимерах и главным образом в волокнах (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, ядерный магнитный резонанс, рентгеновская дифракция на малые и большие углы, дифракция видимого света, электронная микроскопия, оптическая и электронно-микроскопическая фрактография и др.) [61 11.27]. [c.324]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Совершенно очевидно также, что полнота и ценность информации, получаемой отдельными спектральными методами, будут существенно возрастать при комплексном использовании инфракрасной, ультрафиолетовой и люминесцентной спектроскопии, электронного парамагнитного резонанса, ядерного магнитного и квадрупольного резонанса и ядерного гамма-резонанса. При этом для целей исследования механизма взаимодействия и подвижности адсорбированных молекул наиболее благоприятно сочетание методов инфракрасной спектроскопии и метода ядерного магнитного резонанса. Для исследования центров адсорбции кислотной, природы важно сочетание инфракрасной спектроскопии е исследованием ультрафиолетовых спектров, спектров люминесценции и спектров ЭПР адсорбированных молекул. Все эти спектральные исследования, как и отмеченные выше исследования инфракрасных спектров, должны проводиться комплексно с рентгеноструктурными исследованиями, исследованиями поверхностных слоев методом дифракции медленных электронов, электронномикроскопическими, химическими и термодинамическими исследованиями. [c.438]

    При экспериментальном определении резонансного поглощения можно идти двумя путями поддерживая постоянным магнитное поле, варьировать частоту создаваемого переменного поля или выполнять условия резонанса [уравнение (5.4.5)], изменяя при постоянной частоте магнитное поле. Проще реализовать второй метод, так как стабилизировать частоту легче, чем магнитное поле. Кроме того, изменять частоту в более широком интервале Е спектроскопии электронного парамагнитного резонанса технически очень трудно. [c.252]

    Методы обнаружения и анализа. Осн. специфич. методы обнаружения и исследования строения Р. с. основаны на использовании спектроскопии электронного парамагнитного резонанса. Спектры ЭПР дают информацию о хим. строении Р. с., степени делокализации неспаренного электрона, о распределении спиновой плотности по разл. атомам частицы. Методом ЭПР можно обнаружить радикалы в концентрации 10 моль/л. [c.156]

    Электронный парамагнитный резонанс представляет собой явление поглощения излучения микроволновой частоты молекулами, ионами или атомами, обладающими электронами с неспаренными спинами. Называют это явление по-разному электронный парамагнитный резонанс (ЭПР) , электронный спиновый резонанс и электронный магнитный резонанс . Все эти три термина эквивалентны и подчеркивают различные аспекты одного и того же явления. ЯМР и ЭПР характеризуются общими моментами, и это должно помочь понять суть метода ЭПР. В спектроскопии ЯМР два различных энергетических состояния (если I = 7г) возникают из-за различного расположения магнитных моментов относительно приложенного поля, а переходы между ними происходят в результате поглощения радиочастотного излучения. В ЭПР различные энергетические состояния обусловлены взаимодействием спинового момента неспаренного электрона (характеризуемого т = /2 для свободного электрона) с магнитным полем — так называемый электронный эффект Зеемана. Зеемановский гамильтониан, описывающий взаимодействие электрона с магнитным полем, дается выражением [c.5]

    Спектроскопия электронного парамагнитного резонанса (ЭПР), известная также под названием спектроскопии электронного спинового резонанса (ЭСР), представляет собой метод, регистрирующий переходы между спиновыми уровнями неспаренных электронов молекулы во внешнем магнитном поле. ЭПР (ЭСР)-спектроскопия имеет дело с поглощением микроволновой энергии электромагнитного поля образцом, помещенным в такое поле. Поглощение представляет собой функцию неспаренных электронов, содержащихся в молекуле. Спектр ЭПР (ЭСР) — это зависимость поглощения микроволновой энергии от внешнего магнитного поля. [c.340]


    Основные специфические методы обнаружения и исследования строения свободных радикалов основаны на использовании спектроскопии электронного парамагнитного резонанса (ЭПР). Спектры ЭПР дают информацию о химическом строении радикалов, степени делокализации неспаренного электрона, о распределении спиновой электронной плотности по различным атомам частиц. Методом ЭПР можно обнаружить концентрации свободных радикалов от 10" моль/л. [c.216]

    Уровни сверхтонкой структуры обусловлены наличием собственных моментов (ядерных спинов) у атомных ядер (табл. 14.3). Разности энергий этих уровней очень малы, составляя от десятимиллионных до стотысячных долей электрон-вольта (от тысячных до десятых долей обратного сантиметра). Переходы между такими уровнями лежат в основе группы радиоспектроскопических (спин-резонансных) методов анализа спектроскопии электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР), ядер-ного квадрупольного резонанса (ЯКР) и др. [c.335]

    Спектроскопия электронного парамагнитного резонанса. Молекулы либо ионы, имеющие неспаренные электроны, обладают характерными магнитными свойствами. Ионы переходных металлов, свободные радикалы, молекулы, находящиеся электронном возбужденном состоянии, и т. п. часто обладают такими неспаренными электронами и, следовательно, магнитным моментом. Величину магнитного момента измеряют при помощи спектрометра электронного парамагнитного резонанса, и она может определяться химическим окружением электрона (см. рис. 7.9). Этот метод обладает высокой чувствительностью, сравнимой с чувствительностью спектроскопии в ультрафиолетовой области. Диапазон применения этого метода с точки зрения структуры определяемого вещества несколько ограничен в связи со сложностью интерпретации спектра. [c.173]

    Работы Э. Хюккеля, К. Фукуи, Р. Вудворда, М. Дьюара и Р. Хофмана открыли этап широкого применения орбитальных представлений в органической химии. Среди этих представлений особо следует отметить концепцию граничных орбиталей, которая связывает свойства и поведение органических молекул с их граничными электронными уровнями. В последние годы орбитальные представления получили мощную поддержку со стороны ряда физических методов. По данным фотоэлектронной спектроскопии, электронной трансмиссионной спектроскопии, спектроскопии электронного парамагнитного резонанса оказалось возможным оценивать энергии и симметрию электронных уровней молекул, а тем самым адекватность различных методов квантово-химических расчетов. [c.32]

    Спектроскопия электронного парамагнитного резонанса (ЭПР) основана на измерении резонансного поглощения электромагнитных волн частицами парамагнитных веществ в постоянном магнитном поле. Метод открыт Е.К. Завойским в 1944 г. [c.330]

    Спектры ЭПР изучают с помощью приборов — радиоспектрометров. Спектроскопия электронного парамагнитного резонанса пригодна для исследования твердых, жидких и газообразных веществ. Метод используют для определения концентрации парамагнитных веществ, в радиохимии, фотохимии, гетерогенном катализе, химической кинетике. [c.330]

    Одной из главнейших задач современной науки является изучение строения и свойств многоатомных молекул. В последние два десятилетия наряду с традиционными химическими методами все большее, а иногда и решающее значение приобретают различные физические методы исследования, в частности, методы, основанные на изучении энергетических уровней многоатомных молекул. К этим методам относятся методы электронной, колебательной и вращательной спектроскопии, электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и др. Одно из основных преимуществ этих методов заключается в возможности изучения молекул и молекулярных ассоциатов в любом агрегатном состоянии, при разных температурах и давлениях и без разрушения молекул, как это обычно имеет место при применении химических методов. [c.168]

    Взаимодействие химических веществ с приложенным магнитным полем является существенной частью в четырех основных методах измерение магнитной восприимчивости, спектроскопия ядерного магнитного резонанса, спектроскопия электронного парамагнитного резонанса и масс-спектрометрия. В настоящее время эти методы используются главным образом для структурных исследований, но каждый из них можно применять для количественных определений. [c.168]

    Основные принципы спектроскопии электронного парамагнитного резонанса (ЭПР) хорошо известны [1—3] она широко применяется для изучения различных катализаторов, включая цеолиты, В настоящее время этим методом исследуются 1) обменные катионы переходных элементов 2) стабильные молекулярные свободные радикалы 3) радикалы, индуцированные излучением, а также 4) ионизация молекул внутри кристаллической структуры и окислительно-восстановительные процессы. [c.419]

    Основными экспериментальными методами исследования ион-радикалов являются спектроскопия электронного парамагнитного резонанса и электронная спектроскопия. Спектры ЭПР анион-радикалов содержат наборы характерных линий, а в электронных спектрах появляются новые длинноволновые полосы поглощения. [c.425]

    За время, прошедшее с момента открытия (1944 г.) Е. К. Завойским явления электронного парамагнитного резонанса, методом спектроскопии ЭПР получены подробные сведения о структуре многих органических и неорганических парамагнитных соединений. Вряд ли даже через несколько лет после этого открытия Завойского кто-либо из химиков представлял себе, сколь разнообразными окажутся системы, для исследования которых будет полезен метод ЭПР. В этой книге мы старались дать как можно больше примеров спектров ЭПР, чтобы показать многообразие применений метода. Мы не стремились охватить всю литературу в какой-либо одной области применений ЭПР, тем не менее в монографии приводятся ссылки на все важнейшие статьи и обзоры. [c.7]

    Для изучения неустойчивых частиц, включенных. в твердые тела, могут быть применены спектроскопия, электронный парамагнитный резонанс (ЭПР), измерения магнитной восприимчивости, калориметрия и другие физические методы. Наиболее эффективным для таких исследований оказался метод ЭПР, который дает возможность не только получить данные о природе и строении парамагнитных образований, к которым принадлежат некоторые ионы, атомы и радикалы, но и производить измерения количества этих частиц при разных условиях, в том числе в поле излучения.  [c.329]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Часть вторая (гл. IV—V) содержит результаты изучения процесса разрушения твердых тел современными физическими методами (инфракрасная спектроскопия, электронный парамагнитный резонанс, масс-спектрометрия, рентгеновская дифракция, электронная микроскопия, ядерный магнитный резонанс и др.). Эти методы применялись для проверки выводов, сделанных на основе феноменологических исследований (часть первая), и получения детальной информации об элементарных актах и механизме разрушения. [c.16]

    Обнаружение функциональных груни в молекуле ранее неизвестного соединения также не представляет в настоящее время иринцини-альных трудностей. Значительно сложнее, однако, получить информацию о строении углеродного скелета. Для этого следует провести химическую деструкцию соедииеиия и идентифицировать образующиеся осколки. Так, озонирование и последующее разложение образующихся озонидов позволяет определить положение кратной связи у большого числа алкенов. В качестве других примеров подобного рода следует упомянуть химическую деградацию альдоз (см. раздел. 3.1.1) или деструкцию алкалоидов (см. раздел 2.3.4). Однако химические методы зачастую требуют очень много времени и на их осуществление необходимы относительно большие количества вещества. В связи с интенсивным развитием приборной техники за последние 20 лет получил широкое распространение целый ряд спектральных методов оиределения строения органических соединений, такие как инфракрасная спектроскопия (ИК), раман-снектроскония, электронная спектроскопия (УФ- и видимая области), снектроскония ядерного магнитного резонанса (ЯМР), спектроскопия электронного парамагнитного резонанса (ЭПР), масс-сиектрометрия (МС), рентгенография, электронография и т.д. Эти методы часто в значительно более короткие сроки позволяют получить информацию о структуре и пространственном строении молекулы. Их распространение зачастую сдерживается лишь весьма высокой стоимостью приборов. В рамках настоящего учебника будут обсуждены основы важнейших из этих методов, и на некоторых примерах будет продемонстрирована получаемая с их помощью информация. Более глубоко с этим вопросом можно познакомиться в специальной литературе. [c.36]

    Для прямого изучения данных вопросов используется ряд методов, способных давать наиболее непосредственную информацию о событиях, разыгрывающихся на атомно-молекулярном уровне в нагруженных телах. Это прежде всего — инфракрасная спектроскопия, электронный парамагнитный резонанс и масс-спектрометрия. [c.149]

    Полезную информацию о характере разупорядочения в несте-хиометрических соединениях можно получить из измерений электропроводности, эффекта Холла, спектроскопии электронного парамагнитного резонанса и спектроскопии ядерного гамма-резонанса (см. подразд. 7.4), но, к сожалению, во многих случаях эти методы не дают однозначного ответа из-за отсутствия надежно установленной корреляции между указанными физическими параметрами и видом дефектов. Более информативен метод, основанный на одновременном измерении ионной проводимости, линейного размера и коэффициента термического расширения монокристаллов в зависимости от степени нестехиометрии, создаваемой в условиях опыта кулонометрическим титрованием (см. подразд. 7.7), и температуры. [c.135]

    СН2ОСН3, —СН2С1, —СНО, —СОСНз, —СО2Н и — N , ароматические соединения, содержащие такие заместители, будут называться ароматическими соединениями, замещенными в боковой цепи. Основное внимание будет уделена реакциям в боковой цепи, причем особо будет подчеркиваться влияние ароматического ядра на реакционную способность. В этой связи будут рассмотрены относительно устойчивые триарилметильные катионы, анионы и свободные радикалы, а также количественные корреляции скоростей органических реакций на базе так называемого уравнения Гамметта. В заключение кратко будут рассмотрены принципы спектроскопии электронного парамагнитного резонанса (ЭПР) и использование этого метода при изучении органических свободных радикалов. [c.335]

    Как уже указывалось выше, групповой химический состав нефтяных остатков определяют с использованием жидкостноадсорбционной хроматографии в сочетании с предварительным осаждением некоторых компонентов (обычно асфальтенов) с помощью растворителей. Однако такой анализ не дает достаточно полного представления о химической природе тяжелых нефтяных фракций. Для установления химической структуры нефтяных остатков и их компонентов применяют различные физико-химические инструментальные методы исследования ИК- и УФ-спектроскопию, электронный парамагнитный резонанс (ЭПР), ядерно-магнитный резонанс (ЯМР), рентгеноструктурный анализ. В настоящее время в СССР и за рубежом для исследования смолисто-асфальтеновых веществ достаточно [c.229]

    Книга входит в специальную серию hemi al Topi s for Students, цель которой — дать студентам и начинающим научным работникам основные представления и знания в важнейших разделах современной химии. Данная книга — отличное руководство по спектроскопии электронного парамагнитного резонанса для всех, кто приступает к работе в этой области. Она дает хорошее представление о главных идеях и перспективах этого метода как в теории, так и экспериментальных приложениях. [c.287]

    Как видно из таблицы, вязкости различных растворителей при 77° К, применяемых в качестве матриц, изменяются в очень широких пределах. Чем меньше вязкость матрицы, тем быстрее происходят в ней релаксационные процессы, приводящие к рассасыванию ловушек для электронов. Диффузия ловушек также происходит быстрее в матрицах с малой вязкостью. Малое значение вязкости 3-метилпептана объясняет быстрое исчезновение электронов в этой матрице, созданных фотоионизацией или действием -излу-чения. Фотохимические реакции в жестких средах обычно приводят к образованию радикалов, ион-радикалов, сольватированных электронов и других частиц, способных стабилизироваться в жесткой среде. Поэтому низкотемпературная спектрофотометрия и спектроскопия электронного парамагнитного резонанса являются основными методами исследования химических изменений, происходящих в стеклах. Некоторые процессы двухквантовой диссоциации можно исследовать по флуоресценции образующихся радикалов [25, 26]. [c.67]

    Прогресс в создании новых спектрометров ЭПР с высокой чувствительностью и разрешающей способностью, совершенствование квантовохимических методов расчета спектров ЭПР и разработка новых методик электрохимического генерирования парамагнитных частиц за последнее десятилетие привели к тому, что спектроскопия электронного парамагнитного резонанса стала одним из наиболее доказательных методов детектирования этих частиц. В схеме на рис. 13 метод ЭПР отнесен к числу прямых спектроэлектрохимических методов обнаружения и идентификации промежуточных частиц. Однако уника.льные возможности спектроскопии ЭПР и высокая специфичность метода в отношении частиц радикальной природы выгодно выделяют его среди других методов. Метод ЭПР позволяет не только однозначно установить появление и оценить кинетическую устойчивость радикальных частиц, но и количественно охарактеризовать распределение электронной спиновой плотности по сверхтонкой структуре (СТС) спектра ЭПР, т. е. установить природу и электронное строение этих частиц [6]. [c.64]

    Характеристическая красная и желтая окраски комплексов железа и меди с сидерофилинами не развиваются в отсутствие бикарбоната. Отсюда следует, что этот ион играет главную роль в комплексообразовании металлов с белками [5]. Прямое измерение количества двуокиси углерода, выделяющейся при кислотной денатурации комплексов с железом [42], медью [69], хромом, марганцем и кобальтом [45], подтвердило сделанное ранее предположение Шэйда [5] о том, что на каждый связанный ион металла связывается один бикарбонатный ион. Связывание бикарбоната не является обязательным, и это было продемонстрировано серией исследований связывания металла с трансферрином методом спектроскопии электронного парамагнитного резонанса, которые показали, что специфическое связывание, по крайней мере железа и меди, может происходить и в отсутствие бикарбоната [70]. Образующиеся при этом комплексы были бесцветны и поэтому недетектируемы до появления метода ЭПР. Очевидно, в отсутствие бикарбоната связь железо — белок гораздо слабее, чем в его присутствии, так как при стоянии не содержащего бикарбоната комплекса железа с трансферрином при нейтральных или более высоких значениях pH наблюдается гидролиз железа с образованием нерастворимого гидроксида железа(III). Возможная физиологическая роль этого эффекта будет обсуждена в разделе, посвященном биологическим функциям сидерофилинов. [c.344]

    Спектроскопия электронного парамагнитного резонанса. Для современных приборов ЭПР максимальная чувствительность в большинстве случаев оказывается надостаточной для регистрации пероксидных радикалов, ведущих цепь жидкофазного окисления органических соединений при обычных температурах. Методом ЭПР в окислительных системах удается зарегистрировать лишь некоторые третичные и еще реже — вторичные пероксидные радикалы..  [c.202]

    Так как ь-аскорбиновая кислота является потенциальным двухэлектронным восстановителем, разумно предположить, что в ходе любой окислительно-восстановительной реакции потеря электронов ее молекулой осуществляется в две дискретные стадии. Если это так, то промежуточное соединение, образующееся в результате потери одного электрона, является радикалом аскорбиновой кислоты. Существование свободных радикалов впервые было продемонстрировано более тридцати лет назад. Ямазаки с сотрудниками, используя спектроскопию электронного парамагнитного резонанса (ЭПР), доказал их присутствие in vitro. ЭПР позволяет измерить взаимодействие случайного магнитного поля со спином неспаренного электрона в молекуле. С помошью этого же метода был зафиксирован in vitro аскорбат-радикал, имеющий единственный неспаренный электрон. [c.142]

    Радикалы очень быстро гибнут в результате реком бийации, поэтому концентрация этих интермедиатов редко достигает величины выше примерно 10 М. Это обстоятельство в большинстве случаев исключает использование ультрафиолетовой, инфракрасной и ЯМР спектроскопии для их обнаружения. Однако спектроскопия электронного парамагнитного резонанса, коюряя очень чувствительна к парамагнитным частицам и позволяет регистрировать концентрации радикалов вплоть до 10 Л1, представляет собой чрезвычайно полезный метод обнаружения частиц с неспаренным электроном (молекулы, в которых отсутствуют неспаренные электроны, не регистрируются в этом виде спектроскопии). Сигнал электронного парамагнитного резонанса является убедительным доказательством присутствия в системе свободного радикала, хотя и ничего не говорит об источнике образования радикала (каким путем, в какой реакции он возник). В случае простых органических радикалов однозначное структурное отнесение часто можно провести на осноВе анализа сверхтонкого расщепления или путем сравнения спектра с известным ЭПР-спектром радикала, который был получен другим путем. . [c.94]


Смотреть страницы где упоминается термин Спектроскопия электронного парамагнитного резонанса (метод ЭПР): [c.569]    [c.102]    [c.657]    [c.526]    [c.6]    [c.146]    [c.3]   
Смотреть главы в:

Физическая химия быстрых реакций -> Спектроскопия электронного парамагнитного резонанса (метод ЭПР)




ПОИСК





Смотрите так же термины и статьи:

Резонанс парамагнитный

Спектроскопия парамагнитного резонанса

Спектроскопия электронная

Спектроскопия электронного парамагнитного

Спектроскопия электронного парамагнитного резонанса ЭПР

Электронного парамагнитного резонанса ЭПР, ЭСР спектроскопи

Электронный парамагнитный

Электронный парамагнитный резонанс

Электронный резонанс

Электронных пар метод



© 2024 chem21.info Реклама на сайте