Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Организация массива структурной информации

    Чтобы понять всю сложность исследований, проводимых учеными-биохимиками при изучении структурно-функциональной организации живых объектов, в качестве иллюстрации приведем лищь один пример, поясняющий строение и основы жизнедеятельности простейшей бактериальной клетки Es heri hia соН (в дальнейшем сокращенно — Е. соН). Клетка Е. соИ (рис. В.З) имеет весьма скромные размеры длина — 3, а диаметр — 1 мкм, ее масса приблизительно 6 10 г, две трети которой составляет вода. Остальное вещество клетки образовано белками, свободными аминокислотами, нуклеиновыми кислотами, жирами и углеводами. Клетка состоит из 40 млн больших и средних молекул, участвующих вместе с малыми молекулами в 2—5 тыс. типов химических процессов, многие из которых протекают в 20 — 30 стадий. В клетке содержится около 10 тыс. рибосом, на которых непрерывно синтезируется несколько тысяч типов белков, причем каждая рибосома собирает в среднем одну молекулу белка за 1 с. Сборка представляет собой многостадийную операцию, во время которой несколько сотен аминокислот сшиваются в определенном порядке за счет образования пептидных связей, и включает стадии подбора аминокислот, расстановки их по местам, удаления молекулы воды в процессе образования пептидных связей. Поэтому одновременно в клетке содержится около миллиарда аминокислот, из которых только 1 % входит в состав белков, а остальные находятся в работе. Основная информация о химической организации клетки записана в ДНК буквами такой записи являются триплеты азотистых оснований. В рассматриваемой нами клетке молекулы ДНК содержат 2—5 млн триплетов, т. е. до 15 млн оснаваний, расположенных в строго определенном порядке (для сравнения одна молекула ДНК клетки человека содержит приблизительно 3 млрд оснований). [c.28]


    Следовательно, для автоматизированной ИПС, предназначенной для ответа на разнообразные запросы о реакциях, в качестве поисковых образов реакций целесообразно использовать линейные записи совмещенных структурных уравнений, которые могут выполнять такую же ро.ль, какую выполняют линейные записи структурных формул в ИПС для соединений. При этом наиболее эффективной является такая организация массива поисковых образов реакций, нри которой коды структурных уравнений конкретных реакций сгруппированы но скелетным схемам, а внутри таких групп в подгруппы — по типовым схемам. В таком случае для многих типов запросов скелетные и типовые схемы реакций могут быть использованы в качестве фильтровой информации с целью предварительного отбора уравнений конкретных реакций, которые в дальнейшем необходимо проверять детально с точки зрения соответствия более конкретным структурным условиям , выраженным в запросе. Для запросов, соответствующих более общим условиям, чем те, которые отражены в скелет-Н1.1Х и типовых схемах, целесообразно иметь в автоматизированной ИПС вспомогательный массив фильтровой информации иного типа, соответствующей неполным дескрипторным кодам структурных схем реакций которые мы рассмотрим далее в 13.5. [c.206]

    Обобщение всего основного материала современной аналитической химии проведено в книге на базе теории информации, метрологии и в свете практических задач химического анализа. Это, несомненно, здоровая основа для обобщения, однако в ней не хватает, как нам кажется, одного важного элемента — учета специфических структурных уровней организации и движения материи, используемых в анализе (молекулярные орбитали, внешние и внутренние атомные орбитали, ядро атома). Поэтому несколько искусственный и формальный характер имеет объединение в одной главе пяти разделов, посвященных, с одной стороны, атомно-молекулярной спектроскопии и, с другой стороны, ЯМР- и масс-спектроскопии. Такой же характер имеют отчасти и разделы по хроматографии, включенные в гл. 7, посвященную методам разделений. [c.6]

    Описанные в главе методы могут быть использованы для оценки стехиометрического состава олигомеров. В свою очередь данные об относительном количестве мономеров в олигомере, их молекулярной массе и свойствах дают полезную предварительную информацию о третичной и четвертичной структурах олигомера. Однако рассмотрение закономерностей (и симметрии) структурной организации сложных олигомеров не входит в задачу данной главы [131]. Дополнительную информацию читатель может найти в специальных обзорах, посвященных четвертичной структуре белков [93], белок-белковым взаимодействиям [62], методам определения субъединичной структуры [173]. [c.15]


    Программа СТАН 1. Структурная информация, содержаш,аяся в массивах SD, TKOF и TPRO , удобна для программиста, но неудобна для использования при расчете схемы. Программа СТАН 1 строит массив TPR и формирует структурную информацию в виде, удобном для организации взаимных пересылок между массивами X, KOF, [c.275]

    РНК (см. главу 3) и 2130 белковых субъединиц, масса каждой из которых составляет 17500. Длина вируса примерно 300 нм, ширина—около 17 нм. РНК вируса имеет спиралеобразную форму. Вокруг РНК нанизаны белковые частицы, образующие гигантскую надмолекулярную спиральную структуру, в которой насчитывается около 130 витков (рис. 1.26). Удивительной особенностью вируса является то, что после разъединения соответствующими приемами (добавление детергента) РНК и белковых субъединиц и последующего их смешивания (с предварительным удалением детергента) наблюдаются полная регенерация четвертичной структуры, восстановление всех физических параметров и биологических функций (инфектив-ная способность вируса). Подобная точность процесса спонтанной самосборки вируса обеспечивается, вероятнее всего, информацией, содержащейся в первичной структуре молекулы РНК и белковых субъединиц. Таким образом, последовательность аминокислот содержит в себе информацию, которая реализуется на всех уровнях структурной организации белков. [c.70]

    Информация, которую несут катаболические плазмиды, может расширять круг субстратов хозяина либо полным кодированием нового биохимического пути, либо дополнением и продолжением хромосомально кодируемых путей, либо объединением двух метаболических путей. Комплементация, таким образом, особенно важна, если существующие механизмы приводят только к частичной деградации соединения, в результате которой накапливаются потенциально токсичные метаболиты. Такие цлазмиды могут также обеспечивать существование ферментов, катализирующих с большей субстратной специфичностью реакции ферментных систем, закодированных в хромосомах. Плазмиды с молекулярной массой от 1,5 до более чем 900 тыс. пар нуклеотидов (п. н.) были выделены из природных бактерий. Плазмиды, используемые для конструирования векторов, обычно малы (2—10 тыс. п. н.), в то время как катаболические плазмиды относятся к наиболее крупным. С этими молекулами трудно работать, и, хотя разработаны методы их исследования, об их структурной организации, за исключением нескольких, известно мало. [c.325]

    Нерасходимость луча лазера существенным образом повышает разрешение индикатрисс рэлеевского рассеяния, что позволяет получить более точную информацию о размерах (молекулярных массах) и форме макромолекул и их комплексов. С помощью рэлеевского рассеяния лазерного света удалось, например, определить тонкие детали строения вируса табачной мозаики. Рамановское (комбинационное) рассеяние, связанное с изменением длины световой волны благодаря сложению или вычитанию частот колебаний электромагнитного излучения и молекулы, с успехом применяется для выяснения структурной организации молекул (белки, нуклеиновые кислоты, липиды и т. д.), межмолекулярных взаимодействий и их динамики. [c.364]

    Белок полосы III из мембраны эритроцитов человека представляет собой трансмембранный белок с молекулярной массой около 100 кДа (примерно 800 аминокислотных остатков). Это транспортный белок, две молекулы которого образуют анионный канал для ионов СГ и НСО3, пассивно перетекающих через мембрану в соответствии с градиентами их концентраций [242-244]. Полипептидная цепь белка в а-спиральной конформации несколько раз пронизывает бислой около трети его цепи с N-конца помещена в цитоплазму, а короткий С-концевой участок расположен во внеклеточном пространстве (рис. 1.6). Для того чтобы понять механизм функционирования транспортного белка полосы III, как и механизмы действия других мембранных белков, необходимо знать трехмерную структуру молекулы в условиях липидного бислоя. Для получения такой информации требуется, на первый взгляд, почти невозможное. Во-первых, необходимо отделить трансмембранный белок от липидов и других мембранных белков, не повредив его молекулярной трехмерной структуры, что очень трудно. Во-вторых, из выделенных белковых молекул следует получить, не нарушив их пластической, легко деформирующейся при изменении внешних условий структурной организации, высокоупорядоченный монокристалл требуе-мых размеров, что не всегда удается даже в случае водорастворимых [c.58]

    Общая черта исследований различных биосистем, отражающая природу их субординационной структурной организации, заключается в том, что во всех случаях изучение объекта представляет собой последовательный ступенчатый процесс познания, развитие которого ориентировано от более сложной биосистемы к менее сложной. Здесь и ниже имеется в виду не перечень открытий в их временной последовательности, а каузальный, т.е. причиннообусловленный процесс познания, что не всегда совпадает. Другая черта, также являющаяся общей, состоит в том, что изучение биосистемы любого уровня организации начинается с анализа ее внешней формы и строения, т.е. морфологии. В случае скелетной мышцы сначала было выяснено, что она состоит из пучка мышечных волокон, а каждое волокно представляет собой огромную многоядерную клетку. Эти данные сами по себе еще ничего не говорят о мышечном сокращении, тем более его механизме. Однако последующая редукция системы и изучение морфологии составных частей волокна привели к обнаружению миофибрилл и открытию у них способности сокращаться в присутствии АТР. Стало очевидно, что миофибриллы, составляющие около двух третей массы волокна, являются сократительными элементами клеток мышечной мускулатуры. Почему сокращается сама миофибрилла, осталось пока неясно, но была объяснена причина сокращения мышечного волокна. Морфологическое изучение миофибриллы идентифицировало ее сократительную единицу - саркомер. Сам факт его обнаружения хотя и не прояснил природу сокращения, тем не менее, дал первую информацию о физиологии миофибриллы и детализировал представления о мышечном сокращении на более высоких уровнях волокна и скелетной мускулатуры. Вскоре стало известно, что сокращение саркомера есть результат скольжения толстых филаментов относительно тонких при сохранении длин тех и других. Морфологическое изучение саркомер вызвало появление первой физиологической модели мышечного сокращения (модели скользящих нитей). Она дала трактовку механизму сокращения саркомера, миофибриллы, волокна и скелетной мышцы, но не могла объяснить причину скольжения филаментов. [c.132]



Смотреть страницы где упоминается термин Организация массива структурной информации: [c.248]    [c.370]   
Автоматизированные информационные системы для химии (1973) -- [ c.42 , c.119 , c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Информация

Информация структурная

РНК структурная организация



© 2025 chem21.info Реклама на сайте