Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия атомная оптическая молекулярная

    При этом естественно было обратиться к тем эффектам, которые изотопия вызывает в оптических спектрах. Эти эффекты выражаются в небольших изменениях частот и интенсивностей соответствующих переходов в атомных и молекулярных спектрах различных изотопов одного элемента. Так как частоты и интен сивности в спектрах определяются свойствами данного атома или молекулы, то изотопный спектральный анализ является столь же прямым методом, как и масс-спектральный. Спектральный метод определения изотопного состава в значительной мере свободен от влияния загрязнений образца, допускает анализ многокомпонентных изотопных смесей, чем выгодно отличается от косвенных методов, а главное, не требует такой дорогой и сложной аппаратуры, какой требует масс-спектроскопия. [c.514]


    Оптическая и колебательная спектроскопия связана с электронными и фононными переходами между атомными и молекулярными уровнями. При этом возможно применение как в растворах, так и в твердотельном вариантах для исследования нанокластеров, поверхности твердого тела и адсорбированных на ней атомов, молекул и кластеров. К оптической спектроскопии относятся электронная адсорбционная спектроскопия и спектроскопия отражения, спектроскопия кругового дихроизма и магнитного кругового дихроизма, а также спектроскопия с переносом заряда, когда излучение сопровождается переходом электрона с уровня одного атома на уровень другого атома. Колебательная и вращательная спектроскопия включает инфракрасную адсорбционную и отражательную спектроскопию, спектроскопию комбинационного рассеяния, а также спектроскопию характеристических потерь электронов. [c.83]

    Разделенные изотопы также находят применение в спектроскопии и в физике твердого тела [1169]. Разницы в массах изотопов вызывают колебательные и вращательные изотопные эффекты в молекулярных спектрах. Разнообразные интересные спектроскопические эффекты вызваны разницей в значениях ядерного спина, магнитного момента и электрического квадрупольного момента для различных изотопов. Изучение этих эффектов очень трудно и иногда невозможно без наличия образцов, сильно обогащенных определенным изотопом. Исследование изотопных сдвигов в оптических спектрах атомов [670, 1170, 1847] дает возможность получить информацию о распределении заряда в ядрах различных изотопов и, следовательно, о размере, форме и структуре ядра. Многие из объемных свойств твердых тел зависят от масс атомов, и хотя эти эффекты малы и трудноопределимы, они изучались при рассмотрении электрической проводимости, температуры плавления, удельного объема, удельной теплоемкости и термоэлектродвижущей силы [1346]. Исследование в области сверхпроводимости показало, что критическая температура обратно пропорциональна атомной массе [ИЗО]. Методом дифракции рентгеновских лучей было рассмотрено различие кристаллических решеток LiF и LiF. Оказалось, что решетка LiF меньше на коэффициент 1,0002. Образцы разделенных изотопов нашли применение в качестве источников излучения. Они могут быть использованы для получения монохроматического излучения и, таким образом, пригодны в качестве эталонов длин волн и точного измерения длины. [c.462]


    В противоположность прямым методам, часто используемым в структурном анализе, таким, как рентгеноструктурный и электронографический, при помощи метода спектроскопии комбинационного рассеяния изучают преимущественно динамику решетки. А так как правила отбора для оптических переходов в конечном счете зависят от симметрии молекул и кристаллов, то этот метод может оказаться весьма полезным при установлении структуры кристаллов. В общем случае точное установление пространственной группы и межатомных расстояний для исследуемого кристалла невозможно, однако данные спектроскопии КР позволяют исключить некоторые структуры, а также выбрать одну структуру из двух возможных. Все сказанное особенно справедливо при сочетании метода комбинационного рассеяния с рентгеноструктурным анализом, так как атом водорода имеет очень небольшое сечение рассеяния рентгеновских лучей. Во всех случаях комбинационное рассеяние является источником ценной информации о силах межмолекулярного и внутримолекулярного взаимодействий, атомных и молекулярных движениях, а также о свойствах, которые непосредственно связаны с такими характеристиками твердых веществ, как удельная теплоемкость, пластичность, термическое расширение и теплопроводность. [c.355]

    Термин оптическое возбуждение означает переход атомов или молекул в определенное квантовое состояние в результате селективного иоглощения узкополосного излучения. Б то время как в атомной спектроскопии методы оптического возбуждения успешно используются уже много лет, их применение для молекул наталкивается иа большие сложности. Причина этого заключается в большой сложности молекулярных спектров и недостатке подходящих источников для достаточно интенсивного, но селективного возбуждения. Ситуация резко изменилась после введения лазеров в молекулярную спектроскопию с тех пор в литературе можно было заметить быстрое увеличение числа публикаций по оптическому возбуждению молекул [168]. [c.287]

    Руководство включает два больших раздела оптические методы и электрохимические методы. В первом разделе рассматриваются методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентные методы. Второй раздел включает потенциометрический, кулонометрическнй, полярографический и амперометрический методы анализа. Единство подхода к теоретическим вопросам внутри каждого из разделов позволяет четко увидеть возможности, ограничения и недостатки каждого метода. По каждому методу даны практические работы, отражающие определенные возможности метода либо в исследовательском, либо в прикладном аспекте описана аппаратура. [c.2]

    Отметим в заключение, что все перечисленные выше факты действительно наблюдаются на опыте. В связи с этим за последнее десятилетие возник ряд новых актуальных направлений спектроскопии, имеющих весьма важное научное и прикладное значение (нелинейная спектроскопия, лазерная спектроскопия и т. д.). Кроме того, успехи промышленности оптических квантовых генераторов создают предпосылки для реализации принципиально новых методических возможностей в традиционных областях прикладной атомной и молекулярной спектроскопии. [c.36]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Современная оптическая спектроскопия охватывает диапазон электромагнитных волн от нескольких ангстрем (1 А = 10 см = = 10 мкм) до нескольких сантиметров и состоит из нескольких самостоятельных разделов атомной, молекулярной, спектроскопии твердого тела и прикладной спектроскопии — спектрального анализа. [c.21]

    Природа взаимодействия столь различающихся по энергии квантов с веществом принципиально неодинакова. Так, излучение уквантов связано с ядерными процессами, излучение квантов в рентгеновском диапазоне обусловлено электронными переходами во внутренних электронных слоях атома, испускание квантов УФ- и видимого излучения или взаимодействие вещества с ними — следствие перехода внешних валентных электронов (сфера оптических методов анализа), поглощение ИК- и микроволновых квантов связано с переходом между колебательными и вращательными уровнями молекул, а излучение в ра-диоволновом диапазоне обусловлено переходами с изменением ориентации спинов электронов или ядер атомов. Для решения разнообразных задач наибольшее значение имеют спектральные методы анализа, оперирующие с излучением рентгеновского, оптического, ИК- и радиоволнового диапазонов. В данном практическом руководстве по физико-химическим методам анализа рассматриваются оптические методы, которые традиционно делятся па оптическую атомную и оптическую молекулярную спектроскопию. В первом случае аналитические сигналы в области спектра от 100 до 800 нм являются следствием электронных переходов в атомах, во втором — в молекулах. [c.7]


    Председателем комиссии по спектрохимическим и другим оптическим методам анализа является Л. Бирке (США). В комиссии тоже обсуждаются многие вопросы номенклатуры. Так, готовится терминология, относящаяся к молекулярной и рентгеновской спектроскопии. Соответствующие рекомендации по атомной эмиссионной спектроскопии уже приняты. Создается также систематическая классификация источников излучения для спектрального анализа. Членом комиссии является 10. И. Беляев. [c.225]

    Полная сводка видов электромагнитных колебаний, различающихся по длине волны и, следовательно, по характерным для них величинам переносимой энергии, представлена в табл. И.1—1. Границы между отдельными областями несколько условны как видим, они определяются либо различием в способах получения, либо в способах детектирования. Но по существу непрерывный спектр электромагнитных колебаний делится на отдельные области вследствие различий в процессах, обусловливающих их генерацию или поглощение, и эти различия выражаются соответствующими значениями энергий. Характеристическая температура, указанная для некоторых участков спектра, представляет собой ту температуру, при которой средняя тепловая энергия атомов в одноатомном газе (ЙТ) примерно равна данному кванту энергии (Нх). Область атомно-молекулярного излучения, состоящая из инфракрасного, видимого и ультрафиолетового участков спектра, называют оптической областью в широком смысле слова. Это объединение основано не только на общности их происхождения, но и на сходстве используемой при работе с ними аппаратуры, состоящей из различных зеркал, линз для фокусировки и призм и решеток для спектроскопии. [c.187]

    Но все же положение не так уж безнадежно, как это может показаться на первый взгляд. Кроме кинетических методов исследования элементарных химических актов существуют и другие методы изучения реакционноспособных систем. В их числе физические методы оптическая спектроскопия, радиоспектроскопия, методы рентгенографического и рентгеноструктурного анализов, масс-спект-рометрия, изучение дисперсии оптического и магнитного вращения. Информация, получаемая с помощью этих методов и надлежащим образом обработанная, позволяет проникнуть в мир элементарных взаимодействий электронов и ядер. А для того чтобы разобраться в том, как происходит химическое преобразование на атомно-молекулярном и электронном уровнях, надо ввести определенные микроскопические представления о структуре молекул и постараться понять макроскопические свойства реакционных систем как следствие внутренних особенностей молекул. Это очень важный и, кстати, очень увлекательный момент исследования реакций. Вряд ли кто из химиков откажет себе в удовольствии сконструировать молекулярный механизм изучаемой реакции. Но сколь трудна эта прогулка по внутреннему миру элементарных актов , может понять только тот, кто не однажды испытал па себе горечь разочарования. [c.42]

    Не все перечисленные методы получили широкое распространение в качественном анализе. Так, в фарммкопейном анализе применяют эмиссионный спектральный (сравнительно редко), атомно-абсорбционный, молекулярный абсорбционный спекфальный, люминесцентньн г, рефрактометрический, поляриметрический анализ, спектроскопию ЯМР м ЭПР (относительно редко) другие оптические методы используются шачи-тельно реже. [c.516]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ, метод качеств, и количеств, определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соота. элементного и молекулярного состава в-ва. Эмиссионбый С. а. проводят по спектрам испускания атомов, ионои или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения аиализнруем1>1ми объектами (см. Абсорбционная спектроскопия). В зависимости от цели исследования, св-в анализируемо о в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метрологич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Ато.мно-абсорбционный анализ. Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ. Молекулярная оптическая спектроскопия. Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия). [c.392]

    За последние несколько лет система преподавания химии в американских колледжах и университетах подвергалась коренной перестройке. Специалисты пришли к выводу о необходимости принципиальных изменений. Предметы были разделены на две отдельные группы — вертикальные , например неорганическая и органическая химия, и горизонтальные , например химическая динамика. Пятнадцать лет назад основной курс химического анализа повсеместно изучался на 3-ем и 4-ом семестрах. Этот курс был профилирующей дисциплиной студентов-химиков (углубленное представление о предмете можно было получить на следующих семестрах), а также одной из профилирующих дисциплин для студентов других специальностей, например биологов (которые ее терпеть не могли ). К 1970 г. этот вводный курс был, по существу, исключен из программ 3-го и 4-го семестров. Требования, предъявляемые современной системой образования, заставили ввести новый предмет на мервом семестре — вводный курс по аналитической химии. Такое резкое изменение учебной программы потребовало новых учебников, а их не было. Современная аналитическая химия профессора Пиккеринга является удачной попыткой заполнить этот пробел. Книга представляет собой сжатый лекционный курс, рассчитанный на студентов двухгодичных и четырехгодичных колледжей и университетов. Однако предмет изложен на достаточно высоком уровне с очевидным акцентом на основные принципы методов. Это хорошо защищает студентов от опасной тенденции воспринимать химию как сборник рецептов . Пиккеринг, в ногу со временем, концентрирует внимание на аналитических методах, основанных на взаимодействии между материей и энергией (инструментальный анализ). Среди аналитических методов, основанных на взаимодействии между материей и материей (химический анализ), наибольшим вниманием автора пользуются методы, которые сохраняют свое значение (например, титриметрия). В целом Пиккеринг написал замечательную и небольшую по объему книгу, в которой ему удалось (причем не поверхностно) охватить разнообразные методы термические методы радиохимический анализ эмиссионные методы и методы, основанные на атомной и молекулярной абсорбции спектроскопию комбинационного рассеяния микроволновую спектроскопию ЯМР- и ЭПР-спект-роскопию масс-спектрометрию измерение дисперсии оптической актив- [c.14]

    Возмущающий электростатический потенциал электрического квадрупольного момента ядра нарушает сферическую симметрию замкнутых оболочек и наводит в них конечный квадрупольный момент. Взаимодействие валентного электрона с этим индуцированным квадрупольным моментом приводит к изменению константы квадрупольного взаимодействия. Такой же эффект производит валентный электрон, создавая тем самым конечный градиент поля на ядре. Эти два дополнительных непрямых взаимодействия можно учесть путем умножения e Qg . на (1 —уоо). При этом дается выражением (5-5) уоо — так называемый фактор Штернхаймера для свободного атома. Если уоо > О, то эта величина выражает экранирующий эффект внутренней оболочки электронов, если Уоо < О, то антиэкранирующий. В приложении I перечислены известные значения уоо для атомов и ионов. Учет фактора Штернхаймера особенно важен для ионных кристаллов, в которых градиент электрического поля вызывается, в основном, зарядами соседних ионов, так как для р-электронов и зарядов, внешних по отношению к атому, фактор Штернхаймера различен. В молекулярных кристаллах с ковалентными связями влияние 7 0 на градиент электрического поля в месте атомного ядра в молекуле (создаваемого в основном р-электронами) и в свободном атоме предполагается одним и тем же [2]. Поскольку можно определять из данных спектроскопии атомных пучков и оптических спектров, то особой поправки на (1 — уоо) при вычислениях и теоретических оценках в этих случаях не требуется. [c.70]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Оптическая спектроскопия включает различные методы, основанные на изучонии спектров исследуемого вещества в инфракрасной, видимой или ультрафиолетовой области. В аналитической химии брома применяют методы атомной эмиссионной и абсорбционной спектроскопии, молекулярного эмиссионного и люминесцентного анализа. [c.145]

    Инфракрасная спектроскопия (ИК-спектроскопия) — раздел молекулярной оптической спектроскопии, охватывающий диапазон длин волн 10 —10 м и изучающий спектры поглощения и отражения электромагнитного излучения. По ИК-спектрам можно охарактеризовать состояние молекулы, в первую очередь касающееся колебательных и вращательных энергий конкретных атомов (или атомных фупп) в конкретной молекуле. ИК-спекфы характеризуются высокой индивидуальностью, и поэтому метод находит широкое применение для структурного анализа. См. Энергия колебательная и вращательная. [c.129]

    Большой инт )ес для широкого круга читателей представит обзор Б.Е. Конвея "Специальные методы изучения электродных процессов и электрохимической адсорбции" (глава 5). В электрохимии уже давно ощущается острая потребность в использовании новых физических методов исследования границы раздела фаз, поскольку только они могут позволить перейти от феноменологического описания поверхности на атомно-молекулярный уровень. Соответствующая обзорная литература на русском языке практически отсутствует. Поэтому статья Б.Е. Конвея, содержащая обширную библиографию, приобретает особую ценность. Значительная часть обзора посвящена оптическим методам исследования поверхности электродов. Подробно изложена эллипсомет-рия - от математических основ до приборов и приложений. Далее описан метод электрооиражения и спектроскопия внутреннего отражения в прозрачных электродах. Специальный раздал отведен дифракции рентге новских лучей на поверхности электродов. Описаны методические успехи в исследованиях адсорбции и электродных процессов. Особо рассмотрен радиоизотопный метод и его различные приложения. Кратко обсужден фотоэффект и его использование в исследованиях по электро. химической кинетике. В конце главы дается ряд новейших методов, среди которых отметим накопительную рефлектометрию. [c.6]

    Горелки с предварительным смешением [67, 68] использовали в ранних работах по атомной абсорбции в Австралии и Новой Зеландии. Пламени придавали форму длинного узкого прямоугольника, направленного вдоль оптической оси. Такая геометрия пламени обеспечивала большую длину поглощающего слоя и была аналогична длинным абсорбнионным ячейкам, применявшимся в молекулярной абсорбционной спектроскопии. Использовали серийный распылитель фирмы EEL (Evans Ele troselenium Ltd, Англия). 3 различных лабораториях эту основную конструкцию подвергали модификациям для обеспечения большей химической стойкости [69], для увеличения чувствительности [25] и снижения нестабильности (шума) пламени [70]. [c.35]

    Кроме обычной ЯКР-спектроскопии существует ряд других экспериментальных методов исследования, которые позволяют получить сведения о ядерном квадрупольном взаимодействии. К их числу следует отнести ЯМР-спектроскопию, которая дает возможность измерять константу ядерного квадрупольного взаимодействия e Qq в твердых телах (см. разд. II, Б, 2). В благоприятных случаях величину удается определить и для жидких образцов по времени ядерной магнитной релаксации [27, 28]. Гартман и Ган [29] использовали для определения величины ядер с очень низким естественным содержанием двойной ядерный резонанс при этом в исследуемом образце одновременно присутствуют ядра того же элемента с высоким естественным содержанием, от которых получают сильный сигнал (например, в случае ядер К в КСЮз). Иногда удается определить величину и даже знак e Qq по сверхтонкой структуре спектров ЭПР [30]. Метод двойного электронно-ядерного резонанса (Еп(1ог) [30] дает возможность лучше разрешить и точнее измерить сверхтонкое расщепление, а следовательно, и получить более точное значение e Qq. Для свободных молекул величину e Qq можнс определить по вращательным спектрам газообразных веществ [31]. В случае легких атомов и молекул с малым молекулярным весом для определения величины e Qq применяется метод молекулярных или атомных пучков [32]. Следует отметить, что сам эффект ядерного квадрупольного взаимодействия был открыт Шюлером и Шмидтом [33 при исследовании очень малых сдвигов в сверхтонкой структуре оптических спектров. Существует еще несколько методов экспериментального исследования ядерного квадрупольного взаимодействия, которые относятся к области ядерной физики. Широко известным примером такого рода является -(-резонансная, или мес- [c.220]

    Для определения азота применяются методы как атомной, так и молекулярной спектроскопии, причем первые из них наиболее распространены. Методы атомного спектрального анализа основаны на излучении или поглощении света атомами азота. В оптических методах (эмиссионные, атомно-флуоресцентные, пламеннофотометрические, атомно-абсорбционные) регистрируются атомные спектры азота в видимой и УФ-областях. Рентгеноспектральные методы основаны на исследовании характеристического рентгеновского спектра (эмиссионный, флуоресцентный, микрорент-геноспектральный анализ). [c.123]


Смотреть страницы где упоминается термин Спектроскопия атомная оптическая молекулярная: [c.24]    [c.219]    [c.236]    [c.7]    [c.314]    [c.7]    [c.7]    [c.349]   
Руководство по аналитической химии (1975) -- [ c.178 , c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия атомная

Спектроскопия молекулярная

Спектроскопия оптическая



© 2025 chem21.info Реклама на сайте