Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скандий ионный обмен

    До настоящего времени большинство предложенных методов было реализовано в лабораторных масштабах, поэтому часто их даже трудно отделить от аналитических. Основные методы отделения скандия от примесей 1) осаждение, 2) конденсация и сублимация 3) ионный обмен 4) экстракция. Отметим, однако, что ни один из перечисленных методов не является строго специфичным для скандия получить его соединения высокой степени чистоты можно, лишь комбинируя и сочетая ряд методов. [c.18]


    Другие способы очистки. Отделение скандия можно проводить фракционной конденсацией хлоридов, фракционной сублимацией ацетилацетонатов. Ионным обменом с комплексонами. В цитируемой литературе описаны также другие методы. [c.1159]

    Для отделения скандия от сопутствующих ему элементов предложено большое количество методов, в которых используются весьма незначительные различия в свойствах однотипных соединений. До настоящего времени большинство предложенных методов было реализовано в лабораторных масштабах, поэтому часто их даже трудно отделить от аналитических. Основные методы отделения скандия от примесей 1) фракционное осаждение 2) методы, основанные на различной летучести соединений (конденсация и сублимация) 3) ионный обмен 4) экстракция. [c.247]

    Ионный обмен. Ионообменный метод рекомендуется для очистки скандия от наиболее трудно отделяемых примесей (редкоземельные элементы, иттрий и торий). По сравнению с другими методами разделения он имеет то преимущество, что можно получать соединения скандия высокой степени чистоты. Наряду с этим ему присущи и существенные недостатки небольшая производительность, применение дорогостоящих трудно регенерируемых реагентов. [c.253]

    Получение чистых препаратов ионным обменом со смолой в Си +-фор-ме (метод Спеддинга [31]), обычно применяющимся для разделения РЗЭ, в отношении скандия не нашло применения он вымывается вместе с медью, что вызывает необходимость дополнительной очистки его от меди [32]. Для отделения скандия от РЗЭ и ТЬ, а также от таких примесей, как 2г, Ре, Т1, А1, Са, можно проводить сорбцию на катио- [c.26]

    Применение аминополиуксусных кислот для очистки соединений скандия ионным обменом. [c.178]

    Для переработки тортвейтита было предложено спекание с древесным углем [14]. Измельченный минерал смешивают с древесным углем в отношении 1 1,2. Смесь 35—40 мин выдерживают при 1800—2100°. В результате образуются карбиды S , РЗЭ, А1, Fe, Zr, Ti, частично Si. За одну операцию удается без предварительного тонкого измельчения минерала полностью вскрыть его. При обработке карбидов соляной кислотой все указанные элементы, за исключением Si, переходят в раствор в виде хлоридов. Осадок состоит в основном из избытка угля, непрореагировавшего силиката и карбидов кремния. Из раствора скандий осаждается вместе с РЗЭ в виде оксалатов и отделяется от Fe, Zr и Al. После повторного переосаждения оксалата получают богатый скандиевый концентрат, содержащий около 10% ЬпаОз. Далее очищать рекомендуется дробным осаждением гидроокисей воздушно-аммиачной смесью, содержащей 0,5% NH3. Для окончательной очистки пользуются ионным обменом. [c.31]


    Наиболее поздний обзор препаративных методов получения чистой окиси скандия приведен в статье Массонне [ ], где сделан вывод о том, что эта задача может быть решена лишь комбинацией методов разделения. Используя двукратное осаждение тартрата аммония-скандия, четырехкратную экстракцию роданида скандия диэтиловым эфиром, осаждение гидроокиси и очистку солянокислого раствора, содержащего скандий, с помощью селективного осаждения хлоридов редкоземельных элементов и алюминия и абсорбции примесей анионитами, Массонне получил окись скандия чистотой 99.99%. Однако содержание элементов-примесей в очищаемых им образцах не является характерным для окиси скандия, получаемой из типичного сырья, а некоторые из примененных методов очистки (эфирнороданидная экстракция, ионный обмен) характеризуются либо повышенным расходом реагентов, либо низкой производительностью, а также рядом других недостатков, препятствующих использованию их в больших масштабах. [c.300]

    Использование ионообменных процессов в гидрометаллургии началось с момента выполнения работ по атомной энергетике. В настоящее время ионный обмен широко применяется для получения разнообразных металлов, поскольку обосисчивает комплексное использование бедных, забалансовых руд [45, 46]. Решение этой задачи стало возможным после синтеза специальных селективных ионитов фосфорнокислых — для извлечения индия, скандия и других металлов анионитов — для извлечения комплексных цианидов золота, серебра, а также ванадия, вольфрама, молибдена, тантала амфолитов — цля извлечения меди, цинка, никеля, кобальта и других металлов. Многие из таких систем реализованы в промышленных масштабах. В принципе представляется возможным но двухступенчатой схеме извлекать ценные металлы из океанских вод, хотя эти исследования не прошли пока опытно-промышленной проверки со снятием техннко-экономических показателей. [c.10]

    Методика. Колонку (47 см х б мм), заполненную сильноосновным анионообменником Dowex 1-Х8 (0,07—0,035 мм) в С1-форме, промывают абсолютным этанолом. Подкисленный раствор смеси анализируемых ионов выпаривают досуха на водяной бане. К остатку прибавляют 50 см абсолютного этанола и пропускают раствор через обменную колонку. Скандий проходит в элюат. Затем колонку промывают 150 см абсолютного этанола и элюируют иттрий раствором, состоящим из 8 частей этанола, 2 частей воды и 2 частей соляной кислоты. [c.205]

    Иное происходит при превращении плотных гексагональной или кубической упаковок в ОЦК структуру. Повышение температуры сопровождается не только увеличением энергии тепловых колебаний атомов, но и увеличением энергии электронов внешней оболочки ионов. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р -оболо-чек ионов, не перекрывающихся при низких температурах. Это приводит к переходу плотных низкотемпературных модификаций в высокотемпературные ОЦК структуры у натрия, бериллия, кальция, стронция, скандия, иттрия, всех лантаноидов, титана, циркония, гафния, таллия, актиния, тория, плутония и америция. По той же причине происходит превращение ГЦК у- Мп и у-Ре в ОЦК 8-модификации. Такой переход в эрбии, тулии, прометии, актинии был предсказан [57, 60] до его экспериментального подтверждения [116]. В результате повышения температуры разрушаются двухэлектронные ковалентные связи и образуются ионы с внешними р -оболочками, а следовательно, и ОЦК высокотемпературные модификации у урана, нептуния. Таким образом, повышение температуры сначала приводит к разрушению направленных двухэлектронных связей, сопровождающемуся переходом валентных электронов в свободное состояние и образованием плотных упаковок. При дальнейшем повышении температуры, вследствие перекрывания ортогональных р -оболочек, появляются ОЦК высокотемпературные модификации. [c.202]


Смотреть страницы где упоминается термин Скандий ионный обмен: [c.84]    [c.116]    [c.557]    [c.353]    [c.140]   
Фотометрическое определение элементов (1971) -- [ c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Скандий



© 2024 chem21.info Реклама на сайте