Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения экстракцией роданидов

    Впервые экстракционный метод разделения циркония и гафния предложил Фишер в 1947 г. Роданидные комплексы циркония и гафния экстрагировали в диэтиловый эфир. Позднее было изучено разделение роданидов гафния и циркония с помощью других экстрагентов. В Англии и США в течение многих лет используется в промышленном масштабе метод экстракции роданидов в так называемый гексон (метилизобутилкетон). [c.203]


    Разделение циркония и гафния экстракцией их роданидных комплексов в диэтиловый эфир, описанное Фишером в 1947— 48 гг,, было первым экстракционным методом разделения этих элементов [61, 62]. В качестве исходных солей были использованы сульфаты циркония (гафния), однако в дальнейшем Фишер и другие отказались от применения сульфатов из-за самопроизвольного выпадения осадков и предложили использовать вместо них хлористые соединения циркония и гафния [63]. Роданидные комплексы 2г и Н экстрагируют не только диэтиловым эфиром, но и другими полярными органическими веществами, в состав которых входит электроотрицательный атом кислорода [64]. В органическую фазу переходит преимущественно роданид гафния. В качестве экстрагента в промышленности стали применять гексон [65]. [c.211]

    Небольшие количества железа и меди можно отделить от алюминия экстракцией их роданидов амиловым спиртом или смесью амилового спирта и эфира. Этот метод разделения рекомендуют сравнительно редко. [c.198]

    В зависимости от pH раствора можно провести разделение цинка и кадмия описанным методом экстракции. Из довольно кислых растворов, содержащих роданид, экстрагируется только цинк, тогда как кадмий можно экстрагировать только из слабокислых растворов в присутствии относительно высокой концентрации роданида. При благоприятных отношениях концентраций катионов можно провести последовательную экстракцию цинка и кадмия. Этот метод, однако, становится непригодным при определении малых количеств кадмия, которые в таких условиях отделяют, например, в виде сульфидов. Один из подобных примеров приводится в следующем параграфе. [c.476]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизобутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например, ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. [c.330]


    Широко распространены экстракционные методы разделения. Чаш,е всего применяется экстракция серебра в виде комплексов с дитизоном и его производными. Таким путем серебро можно отделить вместе с медью и ртутью от катионов всех других элементов. При необходимости отделить примеси от основы экстрагируют диэтилдитиокарбаминаты серебра вместе с небольшими количествами других элементов. Реже применяется извлечение посредством дибутилфосфорной кислоты и ее аналогов — купферо-на, бензоилфенилгидроксиламина, оксихинолина и некоторых других реагентов, образуюш,их экстрагируемые органическими растворителями комплексы. В последнее время широко используются методы извлечения в виде тройных комплексов типа амин--серебро-анион (неорганический или органический). В качестве амина часто используется триоктиламин и другие алифатические амины, а переведение серебра в ацидокомплекс осуш,ествляется посредством цианидов, роданидов, тиосульфатов, нитратов. Экстрагируются также комплексы серебра с некоторыми красителями, например комплексы с брЬмпирогаллоловым красным и др. [c.139]

    Исходный раствор получают растворением тетрахлорида циркония в воде или же растворением цирконата натрия, изготовленного сплавлением циркона со щелочью, в соляной кислоте Исследована пригодность трибутилфосфата и диизоамилме-тилфосфината для разделения циркония и гафния в роданидной системе Для ТБФ коэффициент разделения составляет всего 4, для ДАМФ — 25 Хорошее разделение роданидов циркония и гафния получается при использовании в качестве экстрагента циклогексанона Циклогексанон в значительной степени растворяется в воде Для экстракции можно использовать также ацето-фенон, который относится к наиболее дешевым и доступным экстрагентам, но недостатком является его пожароопасность Метод экстракции роданидов удобен для получения концентратов гафния, так как в этом случае гафний экстрагируется [c.203]

    Наиболее поздний обзор препаративных методов получения чистой окиси скандия приведен в статье Массонне [ ], где сделан вывод о том, что эта задача может быть решена лишь комбинацией методов разделения. Используя двукратное осаждение тартрата аммония-скандия, четырехкратную экстракцию роданида скандия диэтиловым эфиром, осаждение гидроокиси и очистку солянокислого раствора, содержащего скандий, с помощью селективного осаждения хлоридов редкоземельных элементов и алюминия и абсорбции примесей анионитами, Массонне получил окись скандия чистотой 99.99%. Однако содержание элементов-примесей в очищаемых им образцах не является характерным для окиси скандия, получаемой из типичного сырья, а некоторые из примененных методов очистки (эфирнороданидная экстракция, ионный обмен) характеризуются либо повышенным расходом реагентов, либо низкой производительностью, а также рядом других недостатков, препятствующих использованию их в больших масштабах. [c.300]

    Экстракция роданида урана. Роданид урана можно экстрагировать многими растворителями, например трибутилфосфатом в присутствии четыреххлористого углерода. Добавление ЭДТА делает это разделение селективным (см. Колориметрические методы , стр. 1073). [c.1069]

    ТОГО циркония и чистого гафния представляет собой самостоятельный передел. Для разделения 2г и НГ предложено более 60 способов, которые можно объединить в следующие основные группы 1) дробная кристаллизация 2) дробное осаждение 3) адсорбция и ионный обмен 4) экстракция 5) селективное окисление и восстановление 6) ректификация. Из всех этих способов промышленное применение нашли дробная кристаллизация фтороцирконатов и фторогафнатов калия, экстракция роданидов циркония и гафния метилизо-бутилкетоном и экстракция нитратов трибутилфосфатом. Некоторые эффективные методы разделения (например, ионный обмен) применимы только в небольших масштабах, другие перспективные методы (например,ректификация и селективное восстановление) не вышли еще из стадии лабораторных исследований и опытной проверки. Целесообразность применения того или иного способа разделения в крупных промышленных масштабах определяется на основании сравнения основных показателей 1) коэффициента разделения (он должен быть максимальным при небольшом его значении требуется большое число ступеней разделения) 2) производительности (наиболее производительны процессы, обеспечивающие высокую концентрацию циркония и гафния в технологическом цикле, а также высокую скорость) 3) оборудования и условий его эксплуатации 4) сложности процесса (под этим понимают число требуемых химических превращений, стоимость и доступность реагентов, трудность их регенерации). Весьма важно не только сравнение процессов разделения по их показателям, но и то, как они согласуются со схемами переработки циркониевого сырья на металл и соединения [91—93]. [c.330]

    Метилизобутилкетон (гексон) является превосходным растворителем для роданида кобальта при экстракционном методе отделения его от никеля . Для оптимальной экстракции кобальта достаточно, чтобы свободная концентрация роданида составляла 2 М. При общей концентрации роданида аммония 5 М коэффициент распределения кобальта равен 980, никеля — 0,0124, если концентрация их в исходном водном растворе равна соответственно 10" М и 0,35 М (при 29°). Применение роданида натрия обеспечивает более эффективное разделение, чем роданид аммония. Очевидно, некоторое количество кобальта экстрагируется в виде кобальтроданида натрия (или аммония). [c.368]


    Гофман и Ландель описали простой метод разделения молибдена и рения и определение последнего. В этом методе, на который уже было указано, раствор мoлибдeнa(VI) и peния(VII) в приблизительно 2 н. соляной кислоте обрабатывают раствором роданида и встряхивают с металлической ртутью и эфиром. При этом молибден восстанавливается и образуется роданид мoлибдeнa(V), который экстрагируют эфиром (присутствие небольших количеств железа облегчает экстракцию молибдена). Рений в водной [c.679]

    Некоторые катионы можно экстрагировать в виде галоге-нидов, роданидов или нитратов. В виде хлоридов можно извлечь диэтиловым эфиром из 6 н. раствора соляной кислоты Ре(П1), Аи(1П), аа(1П), Т1(1П), Аз(1П), 5Ь(1П), 5Ь(У), Мо(У1) и 5п(П), но нельзя извлечь Ре(П), Т1(1), АзСУ) (извлекается в небольшом количестве), А1(1П). Аналогично ведут себя бромиды. Наряду с Ре(1П) диэтиловым эфиром можно извлечь ряд других металлов в виде роданидных комплексов 2г, Hf, Ве, 2п, А1, 8с, Са, 1п, 5п, Т1, V, Мо, и, Ре, Со. Экстракция нитратов имеет особое значение благодаря успешно использующимся методам концентрирования и разделения урана и плутония. Элементы, извлекаемые из раствора 8 н. азотной кислотой, можно расположить в следующий ряд очень легко извлекаемые — Аи, Се, ТЬ, 1) легко извлекаемые — Р, Сг, Аз, 2г, Т1, В1 умеренно извлекаемые — Ве, А1, 5с, V, Мп, Ре, Со, N1, Си, 2п, Оа, Ое, V, Мо, Ад, Сс1, 1п, 5Ь, Ьа, Нд, РЬ. [c.233]

    Содержание больших количеств кобальта осложняет непосредственное определение никеля а-диоксимами, поэтому необходимо предварительно разделение этих элементов. Для этого используют метод отделения больших количеств кобальта в виде роданида экстракцией этилацетатом. Никель определяют ниоксимом турбидиметрическим методом или фотометрически, используя хинолин для растворения ниоксимата никеля [48]. Метод был доработан в лаборатории спектрофотометрии кафедры аналитической химии МГУ. [c.193]

    Галогенидные и роданидные комплексы. Галоге-нидные и роданидные комплексы широко используют для разделения элементов методом экстракции, а также в фотометрических методах для определения ряда металлов. При взаимодействии галогенид- и роданид-ионов с ионами металлов обэазуются комплексные соединения, многие из которых характеризуются определенными спектрами поглощения [Bih] — желтого цвета, Fe(S N)3 и Mo(S N)6 — красного, W(S N)6 — желто-зеленого. NbO(S N)4]-и [Bi(S N)6p — желтого. [ o U] — голубого или синего, [ o(S N)4] — синего. [c.265]

    Комплексы с перечисленными основаниями используются для экстракционно-фотометрического определения и разделения многих металлов. Описаны методы определения меди [14, 24—31, 33, 36], железа [13, 14, 20, 44, 50, 56, 58], кобальта [12, 19,20, 42, 45, 47], таллия [48], сурьмы [40], рения [66], палладия [43, 67] и ряда других металлов. Осуществляется разделение ряда платиновых металлов, рения и молибдена [14]. В ряде случаев разделение производится путем создания различной кислотности водной фазы перед экстракцией. Так, кобальт извлекается в виде пиридин-роданидного комплекса при pH около 6, а никель — при pH 4 [34]. Большое значение имеет выбор экстрагента. Так, пиридин-роданидный комплекс палладия хорошо извлекается хлороформом, а рутений в этих условиях не извлекается. Для его экстракции применяют смесь трибутилфосфата и циклогексано-на [35]. 11звестно использование тройных комплексов для открытия ряда анионов, таких как роданид, иодид, бромид, цианат, цианид [36]. [c.115]

    В 1863 г. Браун [1] показал, что окрашенный роданидный комплекс молибдена, образующийся при восстановлении молибденовой кислоты цинком в присутствии роданид-ионов, экстрагируется диэтиловым эфиром. Этот прием, с использованием Sn la в качестве восстановителя, позднее [2] был использован для обнаружения молибдена в минералах. Интересно, что роданидный метод определения молибдена, включающий операцию экстракции, и до сих пор является едва ли не самым распространенным и надежным методом определения этого элемента. В 1867 г. Скей [3] экстрагировал диэтиловым эфиром роданиды железа (III), кобальта, меди и других элементов. Он указал на возможность осуществления ряда полезных разделений, например разделения кобальта и никеля, золота и платины, железа и щелочноземельных элементов. [c.7]

    Извлечение металлгалогенидных комплексов органическими растворителями нашло широкое и разнообразное применение в аналитической химии, радиохимии, гидрометаллургии, при очистке полупроводниковых веществ. Экстракцию соединений металлов с галогенид-ионами используют для разделения малых количеств определяемых элементов, для аналитического концентрирования, получения материалов высокой чистоты. Вольшое значение имеют многочисленные экстракционно-фотометрические аналитические методы, основанные на использовании галогенидов и особенно роданидов, а также радиохимические способы выделения радиоизотопов, в частности изотопов без носителя. Экстракция галогенидных и роданидных комплексов применяется в промышленности для разделения циркония и гафния, ниобия и тантала, для выделения галлия и теллура. Использование экстракции металлгалогенид-ных комплексов в гидрометаллургии будет в ближайшие годы значительно расширяться. [c.295]

    Экстракционные методы оказались также полезными при разделении неорганических материалов. Например, нитраты, хлориды и роданиды чрезвычайно большого числа катионов легко экстрагируются органическими растворителями, что позволяет отделить эти катионы от неэкстрагирующихся солей. Кроме того, органические хелатообразующие реагенты превращают многие неорганические катионы в соединения, легко экстрагирующиеся органическими растворителями. Сочетание селективного хелатообразования и селективной экстракции позволяет осуществить много важных разделений. [c.247]


Смотреть страницы где упоминается термин Методы разделения экстракцией роданидов: [c.73]    [c.277]    [c.92]    [c.378]    [c.28]    [c.406]   
Аналитическая химия алюминия (1971) -- [ c.177 ]

Аналитическая химия алюминия (1971) -- [ c.177 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы разделения экстракцией

Роданиды

Роданиды методами

Роданиды экстракцией



© 2025 chem21.info Реклама на сайте