Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иттрий в природе

    Редкоземельные металлы обычно находятся в природе совместно. Они образуют минералы, представляющие собой твердые растворы родственных соединений различных металлов. Например, один из главных источников редкоземельных металлов — минерал монацит состоит в основном из фосфатов церия, лантана, иттрия и других редкоземельных металлов. Таким образом, природным сырьем, из которого получают как элементы побочной подгруппы третьей группы, так и лантаноиды, служат одни и те же минералы. [c.499]


    Массовое содержание скандия, иттрия и лантана в земной коре составляет приблизительно 10" %. Массовое содержание актиния в земной коре значительно ниже (порядка 10 %), поскольку оба его изотопа Ас и Ас, встречающиеся в природе, радиоактивны. [c.282]

    Иттрий по свойствам стоит ближе к лантаноидам (радиус У + близок к ТЬ + и Оу ). В природе он встречается в лантаноидных минералах как изоморфная примесь. [c.506]

    При разделении РЗЭ иногда рекомендуется использовать последовательно разные элюанты в связи с тем, что положение отдельных элементов в зависимости от природы комплексообразователя при десорбции может меняться. Особенно это проявляется у иттрия [109]. [c.126]

    В природе лантаниды очень рассеяны и встречаются всегда смешанными друг с другом, лантаном и иттрием. Их относительное содержание в земной коре показано на рис. XI-14 (за единицу принято содержание церия — 0,0005%). Как видно из рисунка, [c.366]

    Электровосстановление скандия и иттрия также происходит в две ступени или же непосредственно до металлического состояния в зависимости от природы растворителя [1178]. Электродные процессы необратимы, с повышением pH раствора необратимость уменьшается. [c.91]

    В настоящее время синтетические монокристаллы широко применяются в различных отраслях науки и техники. Некоторые из них не встречаются в природе и, строго говоря, не могут быть отнесены к минералам. Однако такие синтетические кристаллы, как фторфлогопит, иттрий-алюминиевый гранат и другие, имеют весьма близкие в кристаллохимическом отношении природные аналоги. В сложившейся практике синтеза минерального сырья эти кристаллы часто упоминаются как искусственные минералы. [c.3]

    Таким образом, механизм травления поверхности кристаллов ИАГ при выращивании кристаллов в условиях вакуума подтверждает предположение об эвтектической природе соединений, протравливающих бороздки на поверхности кристаллов. Это позволило предложить способ травления кристаллов ИАГ в расплавах смеси оксидов иттрия и алюминия. Определены оптимальные составы и режимы обработки для селективного травления кристаллов ИАГ. Показано, что разработанный способ травления позволяет получать большую информацию о процессе кристаллизации ИАГ по сравнению с известными методами селективного травления этого кристалла. [c.225]

    Обширная группа элементов в шестом периоде периодической системы Менделеева, известная под названием редких земель нли лантаноидов, состоит из 15 элементов лантана (Ьа), церия (Се), празеодима (Рг), неодима (N(1), прометия (Рт) самария (8т), европия (Ей), гадолиния (0(1), тербия (ТЬ), диспрозия (Ьу), гольмия (Но), эрбия (Ег), тулия (Ти), иттербия (УЬ) и лютеция (Ьи). Этим элементам в природе сопутствует иттрий (V), который чрезвычайно с ними сходен по химическим свойствам. Поэтому он обычно рассматривается совместно с этой группой элементов. [c.7]


    Исторически закрепившийся за элементами этой группы термин редкие можно применять только в геохимическом смысле, но в обычном, особенно по отношению к некоторым членам этого ряда — церию, иттрию, неодиму и лантану,— он скорее характеризует степень их освоения, нежели действительную распространенность в природе. [c.10]

    Элементы семе(1ства встречаются в природе всегда вместе друг с другом, а также с лантаном и иттрием. Наиболее важными минералами для извлечения РЗЭ являются моноцит ЭРО4, бастнезит ЭРСОз, лопарит (Ыа, Са, Э)2 (Т1, ЫЬ, Та) Ов и др. [c.642]

    Скандий, иттрий н лантан имеют ио одному устойчивому изотопу 5с-45, -89 и La-I39. Для всех лантаноидов, кроме прометия, известны устойчивые и ютоны нромстнй не имеет ни одного устойчивого и 0Т0па. Актиний и актиноиды также не имеют устойчивых изотопов—дни все радиоактивны. Однако среди радиоактивных изотопов тория и урана встречаются относительно устойчивые, в свяан с чем эти элементы встречаются в природе в относительно больших количествах, представляющих практический интерес. [c.260]

    XIX в., когда ошибочно считали, что минералы, содержащие элементы двух подгрупп цериевой (Ьа, Се, Рг, Кс1, Зт) и иттриевой (V, Ей, Сё, ТЬ, Оу, Но, Ег, Тп1, УЬ, Ей), редко встречаются в природе. На самом деле Р. э. не являются редкими. По своим физическим и химическим свойствам Р. э. очень сходны, что объясняется одинаковым строением внешних электронных оболочек их атомов. Р. э. применяют в различных отраслях техники радиоэлектронике, приборостроении, атомной технике, машиностроении, химической промышленности, металлургии и др. Еа, Се, N(1, Рг используют в производстве стекла. Эти элементы повышают прозрачность стекла, входят в состав стекла специального назначения, пропускающего инфракрасные и поглощающего ультрафиолетовые лучи, а также в состав кислото-и жаростойкого стекла. Р. э. и их соединения широко применяются в химической промышленности для производства пигментов, лаков и красок в нефтяной промышленности в качестве катализаторов, в производстве специальных сталей и сплавов как газопоглотители (см. Иттрий. Лантаноиды). [c.212]

    ЭРБИЙ (Erbium, название от г. Иттербю в Швеции) Ег — химический элемент П1 группы 6-го периода периодической системы Д. И. Менделеева, п. н. 68, ат. м. 167,26, относится к группе лантаноидов. Открыт в 1843 г. К. Мозандером. Природный Э. имеет шесть стабильных изотопов, известны 14 радиоактивных изотопов. Э. встречается в природе вместе с иттрием. Нагретый оксид ErjO светится зеленым светом. В химических соединениях Э. трехвалентен. Применяется для производства некоторых сплавов, стекла, которое хорошо поглощает инфракрасные лучи. [c.293]

    Лантаноиды встречаются в природе обычно вместе, а также с лантаном и иттрием. Их вместе с элементами побочной подгруппы третьей группы (кроме 8с) называют редкоземельными металлами. Главным минералом редкоземельных элементов является монацитовый песок — смесь фосфатов (ЭРО4), содержаш,ая еще и ТЬ. Однако прометий Рт — радиоактивный элемент — в земной коре не встречается. Его получают искусственно. Он был обнаружен в 1947 г. в продуктах деления ядер урана в ядерных реакторах. [c.321]

    Ядра и изотопы. Скандий, иттрий и лантан имеют по одному устойчивому изотопу 2iS (100%), Y (100%), sfLa (99,911%). Для изотопа La, являющегося радиоактивным, характерен большой период полураспада — 10 лет в природе он открыт в незначительных количествах (0,089%). Актиний не имеет ни одного устойчивого изотопа. Известно 10 его радиоактивных изотопов, из которых наиболее устойчивым является Ас с периодом полураспада 21,6 года. [c.57]

    Общее содержание лантаноидов в земной коре невелико и составляет около 0,004 вес.%. Церитовые элементы преобладают над иттриевыми. Больше всего в природе церия и неодима. Известно много минералов, в состав которых входят лантаноиды, но содержание их не превышает 8 вес.% (имеется в виду суммарное содержание лантаноидов, лантана и иттрия). [c.69]

    Лантаноиды обычно встречаются в природе вместе, иногда совместно с иттрием, лантаном, скандием, торием, гафнием, цирконием, ниобием, танталом и др. Общее весовое содержание лантаноидов и лантана не превышает 0,01%. И все же можно указать целый ряд минералов, в которых встречаются и превалируют те или другие элементы — лантаноиды. Такими минералами являются силикаты и фосфаты церия и других элементов и соответствующие соли иттриевых земель (см. ниже). Первые называются цери-товыми минералами, а вторые иттриевыми. Всего известно до 180 минералов, содержащих лантаноиды. [c.276]

    Таким образом, к 1907 г. были открыты 14 редкоземельных элементов (а также скандий и иттрий). Элемент №61 до настоящего времени в природе обнаружен не был даже в ничтожных количествах. Он впервые искусственно получен только в 1947 г. Маринским и Гленденином в США [8] из продуктов деления урана в ядерном реакторе назван прометием. Установлено существование одиннадцати его изотопов — от до Фт. Наиболее долгоживущий изотоп (2,64 г) полу- [c.50]

    Скандий, иттрий и лантан в природе обычно встречаются вместе с четырнадцатью лантаноидами — элементами от церия (атомный номер 58) до лютеция (атомный номер 71). Все эти элементы, за исключением прометия (полученного искусственно), обнаружены в природе в очень нобольших количествах, причем основным источником этих элементов является минерал монацит — смесь фосфатов редкоземельных элементов, содержащая также некоторое количество фосфата тория. [c.528]


    ИТТРИЙ (Yttrium) Y, химический элем, III гр, периодич, сист,,ат, н, 39, ат, м, 88,9059 относится к РЗЭ. В природе [c.229]

    Понятия редкоземельные элементы и лантаноиды часто путают. Между тем это не одно и то же. Лантаноиды — это элементы, заряды ядер которых имеют промежуточные значения между зарядами ядер лантана и гафния. К ним относятся 14 элементов церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций. В число редкоземельных элемеитов входят помимо перечисленных еще три элемента скандий, иттрий и лантан. Это объединение 17 элементов под оЗщим названием удобно потому, что скандий, нттрий н лантаи очень похожи по своим химическим свойствам на лантаноиды. Поэтому н в природе все 17 элемеитов обычно ьстречаются в д l x и тех же рудах. [c.121]

    Нахождение в природе. Иттрий является важной составной частью гадолинита УЮз-ЗСВе, ре)0-23102 и иттротанталита У1[(КЬ, Та)207]ь изоморфной омеси пиротанталата и пирониобата иттрия. Элементы этой группы были также найдены в церите, торите и монаците. [c.608]

    Открытием н.члиния заполнилась группа редких земель. Иллиний, названный по штату Иллинойсу и его университету, где производились главные работы над этим элементом, принадлежит, вероятно, к наименее распространенным в природе из всех элементов этой группы. Он может быть открыт путем рентгеновского спектрального анализа и определен магнитно-оптическим методом. Его свойства сходны со свойствами других элементов. Количества его, находимые в отходах монацита при производстве газокалильных сеток или в минералах (например, гадолинит), настолько малы, что фракционированных осаждений, производившихся ежедневно в течение трех лет и требовавших много тысяч операций, оказалось недостаточно для получения сколько-нибудь значительного количества чистой иллиниевой соли. Исследования показали, что его основность немного более основности иттрия и значительно больше основности самария. В общем основность редких земель понижается с повышением атомного номера. Исключение представляет иттрий. [c.619]

    Влияние кристаллической структуры 28105 на люминесцентные свойства внедренных ионов В1 рассмотрено в [352]. Силикат иттрия существует в двух структурных модификациях. И если в низкотемпературной структре ионы В1 люминес-цируют в синей области спектра, то в высокотемпературной люминесценция смещается в УФ-область. Активированный висмутом ниобат иттрия обладает голубой фосфоресценцией при соотношении ниобия к иттрию более чем 1,2 1 и преимущественно больше чем 1,7 1. Метод приготовления фосфоресцентного материала включает образование оксидных предшественников, обжиг, охлаждение, измельчение и повторный обжиг [353]. Люминесценция В1 в гранатовом кристалле (У, 0с1)зСа5012 представляет собой широкую полосу с максимумом при 480 нм [354]. Цитированные авторы обсуждают природу этой полосы. [c.298]

    Необходимо иметь в виду, что при высоких температурах восходящая диффузии примеси и избыточных компонентов кристаллизуемого вещества под действием поля напряжений дислокаций может способствовать локальному увеличению их концентрации. В результате на дислокациях могут возникать частицы макроскопических размеров. На рис. 50 а-в представлена кинетика данного эффекта в поле линейных и ге лико ид ал ьных дислокаций в монокристаллах иттрий-алюминиевого граната. Исследование указанного процесса позволило разделить эту кинетику на три стадии. На первой происходит декорирование геликоидальных дислокаций (см. рис. 50 а), на второй — развал геликоидалььгых дислокаций с образованием системы колец, строго ориентированных в монокристалле (см. рис. 50 б). На этой стадии уже видны механические частицы макроскопических размеров. На третьей стадии эти частицы образуют вокруг линейных дислокаций скопления, контуры которых имеют явно геометрическую форму, отражающую симметрию кристаллографической плоскости, по поверхности которой шла диффузия (см. рис. 50 в). Таким образом, в случае высокотемпературной кристаллизации (а также высокотемпературного отжига) дислокации, кроме локальных термоупругих полей, могут способствовать образованию в монокристаллах механических включений высокой плотности. Их отличие от включений, захватываемых фронтом роста, заключается в том, что размер частиц практически постоянен, а колонии этих частиц представляют собой скопления, в которых частицы находятся на строго определенном расстоянии друг от друга. Можно думать, что природа сил, приводящая к такому распределению, носит электростатический характер [69]. [c.71]


Смотреть страницы где упоминается термин Иттрий в природе: [c.640]    [c.55]    [c.168]    [c.50]    [c.62]    [c.346]    [c.229]    [c.229]    [c.229]    [c.229]    [c.590]    [c.59]    [c.48]    [c.51]    [c.587]    [c.606]    [c.9]    [c.229]    [c.229]   
Основы общей химии Том 2 (1967) -- [ c.228 , c.229 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Иттрий



© 2024 chem21.info Реклама на сайте