Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Суперпозиция температурно-временна

    Принцип температурно-временной суперпозиции. Сравнение кривых, представленных на рис. V. 13 и V. 14, показывает, что увеличение частоты и понижение температуры одинаково влияют Hai деформацию или угол сдвига фаз. Одно и то же значение деформации или угла сдвига фаз можно получить, изменяя либо частоту,, либо температуру. Это в определенном смысле свидетельствует об эквивалентности температуры и времени воздействия — так называемый принцип температурно-временной суперпозиции. Исходя из этого принципа, можно рассчитать зависимость механических [c.151]


    Принцип температурно-временной суперпозиции. [c.173]

    Название данного раздела соответствует очень эффективной модели простой поверхности ослабления , предложенной Смитом [41]. Эта модель опирается на рассмотрение вязкоупругого поведения сплошных полимерных тел, т. е. на представление, которое должно сводиться согласно принципу температурно-временной суперпозиции внешних параметров нагружения-напряжения, скорости деформации и температуры к соответствующим молекулярным состояниям. Если критерий разрушения действительно имеет единые пределы молекулярной работоспособности, то построенные кривые приведенного напряжения Б зависимости от деформации при разрушении в различных экспериментальных условиях должны ложиться на одну обобщающую кривую (рис. 3.6). Эта концепция справедлива применительно к большому числу натуральных и синтетических каучуков и вулканизатов при однотипных механических йены- [c.73]

    Принцип температурно-временной суперпозиции имеет большое практическое значение. Используя приведенные выше соотношения и методы обработки экспериментальных данных, можно получить информацию о механическом поведении полимеров при эксплуатации их в самых разнообразных условиях. [c.153]

    Суперпозиция температурно-временная — определенная взаимосвязь влияния изменения температуры и продолжительности, скорости, частоты нагружения на механические свойства повышение температуры вызывает такое же изменение данного механического свойства, как соответствующее увеличение продолжительности (уменьшение скорости или частоты) нагружения. [c.568]

    Возникающие при деформировании полимеров нормальные напряжения (как эффект второго порядка) пропорциональны М . Важное практич. значение имеют температурные и концентрационные зависимости вязкости р-ров полимеров. Релаксац. св-ва р-ров полимеров в сильной степени зависят от т-ры, поскольку движения тех или иных элементов полимерной цепи проявляются (возникают, фиксируются) в определенном диапазоне т-р. Результаты измерений температурных зависимостей времен релаксации или связанных с ними мех. характеристик позволяют судить о природе мол. движений (метод релаксац. спектроскопии). Как правило, существует неск. групп времен релаксации, внутри каждой из к-рых температурные зависимости времен релаксации одинаковы. Поэтому вязкоупругие характеристики в широком температурном диапазоне оказываются подобными по форме, но сдвинутыми по временной (или частотной) оси, так что они м.б. обобщены в единую температурно-инвариантную характеристику вязкоупругого поведения материала. Этот вывод наз. принципом температурно-временной или температурно-частотной суперпозиции. [c.248]


    О 10 с тоже вызывает затруднение из-за интенсивного развития инерционных и тепловых эффектов [6]. Практически реализуемым интервалом шкалы времени при измерении напряжений является промежуток времени от 10 до 10 с. Поэтому можно говорить лишь об оценке параметров состояния системы при < О по экстраполяции полученных кривых к начальному моменту времени. В этих условиях альтернативой является применение метода температурно-временной суперпозиции, предложенного в работах [6, 17, 64]. Метод позволяет произвести экстраполяцию результатов расчета по модели к начальному моменту времени 1 = 0. [c.325]

    При изучении зависимости свойств вязкоупругих материалов от скорости приложения нагрузки и температур возник важный экспериментальный метод, который позволяет получить данные для очень широкого диапазона этих параметров [1, 2, 3]. Основой принципа температурно-временной суперпозиции явилось правило влияние температуры на свойства аналогично действию времени приложения нагрузки. Любой показатель реологических свойств вязкоупругих тел, определенный при какой-либо температуре Т и скорости приложения нагрузки ш, меняет свое значение при изменении температуры до Т1 или времени до 0)1. Причем степень его отклонения может быть одинакова, независимо от того, за счет температуры или времени действия нагрузки произошло это изменение. Ферри с сотрудниками [11 показали, что зависимость всех механических и электрических свойств аморфных полимеров выше их температуры стеклования То может быть описана одной эмпирической функцией a , которая представляет собой отношение значений времени релаксации или вязкостей при температуре Т к Тв  [c.67]

    Для определения влияния температуры на ньютоновскую вязкость может быть использован метод температурно-временной суперпозиции и вытекающее из него уравнение ВЛФ (Вильямса—Лан-делла—Ферри) для интервала температур Т — < 50 К (где — температура стеклования)  [c.29]

    ПРИНЦИП ТЕМПЕРАТУРНО-ВРЕМЕННОЙ СУПЕРПОЗИЦИИ (НАЛОЖЕНИЯ) В ИССЛЕДОВАНИЯХ АСФАЛЬТОБЕТОНОВ [c.67]

    Разброс данных, полученных экспериментально и графически (рис. 3), находится в пределах ошибок эксперимента. Таким образом, принцип температурно-временной суперпозиции справедлив для описания предельных деформаций при разрушении асфальтобетонов. [c.70]

    Принцип температурно-временной суперпозиции хорошо описывает вязкоупругие свойства асфальтобетона. Для определения модулей жесткости, предельных деформаций при разрушении и других свойств асфальтобетонов при любой температуре и скорости приложения нагрузки достаточно знать температуру стек- [c.73]

    Из уравнения (1.67) следует, что можно применить метод температурно-временной суперпозиции непосредственно к результатам испытаний, представленным в виде кривых течения. Для этого, выбрав температуру приведения, нужно умножить все значения скоростей сдвига, соответствующие испытаниям при других температурах, на свое значение 38 [c.38]

    Проекции этой кривой на плоскости ст, / и е, представляют собой зависимости СТр и 8р от времени. Изменение температуры будет сопровождаться сдвигом поверхности свойств вдоль оси времен в соответствии с принципом температурно-временной суперпозиции [45]. Все процессы протекают при этом быстрее. [c.73]

    При высоких степенях наполнения, когда появляются дополнительные релаксационные механизмы, принцип температурно-временной суперпозиции становится неприменимым [246]. Реальный механизм релаксационных процессов в высоконаполненных вулканизатах сложен и мало изучен. Бартенев и Вишницкая [247] иссле- [c.137]

    С точки зрения феноменологического описания экспериментальных данных по динамическим механическим свойствам наполненных полимерными наполнителями композиций, представляет существенный интерес распространение на них принципа температурно-временной суперпозиции, или метода приведения переменных, развитого Вильямсом, Лэнделом и Ферри. Применение этого метода для описания гетерогенных смесей полимеров позволило [c.228]

    При переменной температуре, согласно принципу температурно-временной суперпозиции [6—8], величина Тг должна быть умножена на коэффициент приведения ат. Тогда из уравнения (П.1) следует  [c.73]

    Пусть теперь функция ползучести измеряется в условиях переменной температуры [11]. Записываемые ниже соотношения справедливы не только в случае ползучести, но пригодны и для описания любых других процессов в полимерных телах, подчиняющихся принципу температурно-временной суперпозиции. При проведении двух экспериментов с одинаковыми граничными условиями по напряжениям и деформациям, при условии, что один из них проведен при температуре приведения То, а другой при переменной температуре T t), можно записать  [c.77]

    Прн установлении такого рода корреляционных зависимостей следует учитывать принцип температурно-временной суперпозиции, так как длительность удара и период акустических колебаний обычно не совпадают. [c.307]

    Индекс течения при изменении температуры в диапазоне 50— 100° С остается неизменным или несколько увеличивается. При этом величина индекса течения, определенная для участков кривых течения, соответствующих одному и тому же интервалу изменения напряжения сдвига, остается практически неизменной. Это обстоятельство является естественным следствием релаксационного механизма аномалии вязкости и вытекает из отмеченной выше возможности применения метода температурно-временной суперпозиции непосредственно к логарифмическим кривым течения расплавов. [c.52]


    Падение напряжения в результате релаксации зависит не только от времени, но и от температуры. Выше подчеркивалась взаимная связь между влияниями каждого из этих параметров на релаксационные свойства полимеров, заключающаяся в том, что увеличение времени ( действия силы или снижение частоты со приложенной нагрузки эквивалентно уменьшению температуры Т. В этой эквивалентности и заключается суть принципа температурно-временной суперпозиции, впервые сформулированного А. П. Александровым и Ю. С. Лазуркииым пользуясь им, можно построить обобщенную кривую релаксации (обычно для 25°С), охватывая весьма широкий интервал значений со, в том числе таких, которые трудно или даже невозможно получить в лабораторных условиях. [c.394]

    Можно показать, что если релаксационный механизм действительно определяет наблюдающуюся при стационарном течении аномалию вязкости, то к результатам реологических экспериментов должны быть приложены принципы температурно-временной суперпозиции, впервые высказанные нашими соотечественниками А. П. Александровым и Ю. С. Лазуркиным [c.35]

    В результате процессы перегруппировки полимерных молекул затрудняются, что, в свою очередь, приводит к увеличению времени релаксации. По аналогии с температурно-временной суперпозицией пьезоэффект подчиняется пьезо-временной суперпозиции. Это означает, что влияние гидростатического давления на вязкость при любой скорости сдвига можно учесть введением коэффициента приведения. [c.54]

    Сущность метода температурно-временной суперпозиции применительно к результатам реологических испытаний состоит в том, что экспериментальные данные, полученные при различных температурах, могут быть совмещены параллельным перемещением вдоль оси логарифма скорости сдвига. [c.35]

    Теоретическое обоснование возможности распространения принципа температурно-временной суперпозиции на результаты реологических исследований было сделано в работах Г. В. Виноградова [c.36]

    Были испытаны на изгиб асфальтобетонные образцы—балочки размером 120 X 25 X 25 мм в интервале температур от +30 до —40°С при 3 скоростях приложения нагрузки, равных 0,7 60 и 120кг/см .с. Прикладываемая нагрузка и прогиб образцов фиксировались во времени с помощью киносъемки скоростной кинокамерой СКС-1М. Определялись модули жесткости, предельные разрушающие нагрузки и деформации при разрушении. Температурные зависимости модулей жесткости, дефор-маций и предельных разрушающих напряжений асфальтобетонных образцов на битуме 2 (табл. 1), определенные по экспериментальным данным, представлены на рис 1. Главным при описании свойств вязкоупругих материалов с помощью принципа температурно-временной суперпозиции является определение коэффициентов приведения или, иными словами, величин, на которые должны быть сдвинуты точки кривой вдоль оси времен приложения нагрузки или температур. [c.68]

    В вязкоупругих моделях сплошных сред, рассмотренных в данном разделе, используются теория высокоэластического состояния и принцип температурно-временной суперпозиции. При этом неявно принимается молекулярная природа вязко-упругого поведения материала, но явно не вводятся такие неконтинуальные понятия, как дискретность вещества, неравномерность структуры, упорядочение молекул, анизотропия молекулярных свойств, распределение молекулярных напряжений и накопление энергии деформации. Если отдельные акты молекулярного масштаба и неравномерность распределения напряжения или деформации незаметны или не представляют большого интереса, то вполне допустимо представление твердого тела как сплошной среды. [c.75]

    Весьма перспективно применение метода суперпозиций (аналогий), основанного на том, что, например, повышение температуры эквивалентно увеличению времени действия более низкой температуры. Для полимеров установлены температурно-временная, напряженно-временн.ая, влаго-временная и другие видь суперпозиций [166, 167], которые можно применять к клеевым соединениям на полимерных клеях. При этом необходимо принимать во внимание различные ограничения, связанные как с недостаточной практической проверкой того или иного метода аналогий для реальных изделий, так И с тем, что отдельные характеристики исследуемого объекта и реального изделия различаются по напряженному состоянию, краевому эффекту, масштабу и т. п. Методы аналогий основаны на использовании факторов, (температуры, влаги и др.), ускоряющих релаксационные процессы или процессы разрушения. В первом случае речь идет о прогнозировании деформационных свойств (ползучести и т. п.), а во втором — о прогнозировании прочностных характеристик. В настоящее время более развито направление прогно,-зировани-я деформационных свойств полимеров. [c.124]

    Если сопоставить влияние температуры н времени действия силы, то можно отметить, что отношение т // снижается либо прн повышении те.мпературы (т уменьшается), либо прн увеличении /, т. е. существует эквивалентность нлияння временн и температуры. Этот принцип получил название принципа температурно-временной суперпозиции (ТВС) Любая релаксационная характеристика при изменении температуры от Т до Т изменяется на величину /(, равную [c.265]

Рис. 1.26. Температурно-временная суперпозиция кривых течения а — бутадиен-стирольный квучук (Г р = 80° С) б — полиэтилен БД (.Тд = 204° С). Рис. 1.26. <a href="/info/311708">Температурно-временная суперпозиция</a> <a href="/info/15558">кривых течения</a> а — <a href="/info/926797">бутадиен-стирольный</a> квучук (Г р = 80° С) б — полиэтилен БД (.Тд = 204° С).
    Обычно зависимость различных свойств полимеров от времени наблюдения или частоты деформации не удается получить в широком интервале этих переменных. Чтобы найт 1 такую зависи-мость, кривые, полученные при различных температурах, перемещают на графике для получения обобщенной кривой при выбранной температуре. Такой метод, в общем виде сформулированный Toбoль ким- широко применяется и основывается на принципе температурно-временной суперпозиции, в частности на температурночастотной зависимости деформации полимеров, впервые обнаруженной Александровым и Лазуркиным в 1939 г. [c.84]

    Применение метода температурно-временной суперпозици позволяет существенно расширить интервал изменения значений скорости сдвига. Так, используя современные приборы для реологических исследований, удается охватить область изменения скорости сдвига шириной в 2—3 десятичных порядка. Обрабатывая полученные результаты методом температурно-временной суперпозиции, можно расширить область изменения скорости сдвига до 5—6 десятичных порядков (см. рис. 1.26, а). [c.39]


Смотреть страницы где упоминается термин Суперпозиция температурно-временна: [c.280]    [c.258]    [c.624]    [c.179]    [c.127]    [c.104]    [c.105]    [c.333]    [c.26]    [c.71]   
Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.336 ]




ПОИСК





Смотрите так же термины и статьи:

Шаг временной



© 2025 chem21.info Реклама на сайте