Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Описание свойств

    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]


    Сложные углеводородные системы. Нефтяные фракции представляют собой смеси, состоящие из столь большого числа отдельных соединений, что их идентификация для определения состава системы и вообще для инженерных расчетов практически не имеет смысла. Для описания свойств этих систем, называемых сложными или непрерывными смесями, используются так называемые кривые разгонок, из которых наиболее важными являются кривые истинных температур кипения (ИТК). Если представить, что компоненты, составляющие сложную смесь, отгоняются из нее под постоянным давлением в строгой последовательности, отвечающей их точкам кипения t, непрерывно возрастающим с долей отгона е, то график зависимости t — ей носит название кривой истинных температур кипения. Каждая точка на непрерывной кривой ИТК представляет температуру кипения гипотетического точечного компонента, выкипающего из исходной смеси при данной доле отгона, и поэтому может рассматриваться еще и как точка кривой давления насыщенного пара данного компонента, отвечающая при этой температуре тому постоянному давлению, при котором построена линия ИТК. [c.103]

    Существенный прогресс в развитии теории жидкого состояния достигнут в последнее время благодаря применению компьютерной техники — методов численного моделирования Монте-Карло и молекулярной динамики. Вначале эти методы были применены для описания свойств объемных жидкостей — термодинамических и физических — на основании потенциалов межмолекулярного взаимодействия. Это позволило, прежде всего, путем сравнения с известными свойствами реальных жидкостей уточнить вводившиеся межмолекулярные потенциалы. Наиболее надежные результаты получены для простых жидкостей, когда достаточно учесть сферически симметричные силы дисперсионного притяжения и борновского отталкивания, например в форме известного потенциала Леннарда — Джонса. [c.116]

    С проблемой рационального разделения объекта на звенья тесно связана задача принятия системы допущений. Допущения представляют компромисс межд/ требуемой или желаемой точностью описания свойств объекта и возможностью как количественной оценки физико-химических явлений, так и решения получающихся уравнений. [c.13]

    Нетрудно заметить, что описание свойств объекта такими уравнениями достигается при соответствующей обработке. Статические характеристики находят в предположении установившегося режима (речь идет о характере изменения связей в объекте, не зависящем от времени) [c.483]


    М. Бенедикт, Г. Вебб и Л. Рубин [52 ] предложили модифицировать уравнение Битти—Бриджмена с тем, чтобы повысить точность описания свойств веществ прн высоких плотностях. Уравнение БВР имеет вид [c.42]

    Подобно натрию, калнй образует соли со всеми кислотами. Важнейшие из них были рассмотрены при описании свойств соответствующих кислот. [c.568]

    Трудности описания свойств жидкостей в рамках микроскопического подхода известны [335]. В первую очередь, они связаны с тем обстоятельством, что, несмотря на сильные межмолекулярные взаимодействия, для жидкостей характерна только локальная пространственная упорядоченность. Кроме того, развитые в статистической теории жидкостей аналитические методы не всегда позволяют из-за математических трудностей рассмотреть свойства жидкостей, потенциал межмолекулярного взаимодействия которых анизотропен. Поэтому наиболее прямым путем получения информации о свойствах водных систем в рамках статистической физики является вычислительный эксперимент. Рассмотрим его основные положения. Среднее значение некоторой величины А, которая характеризует состояние системы из частиц, определяется следующим образом  [c.118]

    Полученные методами вычислительного эксперимента результаты позволяют сделать вывод о том, что рассмотренные потенциалы межмолекулярного взаимодействия приводят к качественно правильному описанию свойств воды в объемной фазе. Для того чтобы избежать растянутого состояния, достаточно увеличить плотность числа частиц, что слабо сказывается на рассчитанных значениях структурных и энергетических характеристик водных систем. Анализ показывает [339], что это заключение справедливо и для ряда других моделей. Поэтому выбор потенциала межмолекулярного взаимодействия для описания молекулярно-статистических характеристик воды определяется, в основном, минимумом времени, затрачиваемого на расчет энергии взаимодействия в системе. Кроме того, для сопоставления результатов, полученных при различных внешних условиях, необходимо использовать одну и ту же модель. [c.121]

    Для описания свойств, представляемых зависимостями от температуры, используются ортогональные полиномы, важным достоинством которых является их фильтрующая способность, а также возможность повышения степени без пересчета коэффициентов полинома меньшей степени. Для описания свойств зависимостей в системе использованы полиномы вида [c.100]

    В соответствии с уравнением (11,50) можно сделать вывод, что для однозначного описания свойств однофазной термодинамической подсистемы с одним входным и одним выходным потоками необходимо иметь численные значения к 4- 1 интенсивных величин (температура, давление, к — 1 мол. долей компонентов) и одной экстенсивной величины (поток массы). [c.63]

    Выбор того или иного алгоритма решения системы уравнений математического описания определяется конкретным видом уравнений, входящих в состав математической модели. Для описания свойств объектов моделирования используются различные уравнения. [c.14]

    Все операторы программы разделяются на исполняемые и неисполняемые. Исполняемые операторы используются для записи последовательности действий, заданной алгоритмом. Неисполняемые операторы предназначены для описания свойств используемых переменных, а также задания информации о порядке размещения переменных в памяти машины, о порядке взаимосвязи отдельных программ. Неисполняемые операторы обычно размещаются в начале программы. [c.124]

    Степенью свободы называют переменную, которую можно изменять, не меняя агрегатное состояние системы. Число степеней свободы для заданной системы определяется с помощью правила фаз Гиббса, которое будет в аналитической форме представлено ниже. Число степеней свободы для системы определяется как наименьшее число независимых переменных, достаточных для полного описания свойств и состава системы. Так, например, свойства газа, взятого массой 1 моль, описывается с помощью уравнения состояния вещества. В уравнении состояния вещества две переменные могут меняться произвольно (Р, Г Р, V и V, Г), а третья переменная рассчитывается из уравнения состояния вещества по функции Р=Р У, Т). [c.158]

    Для описания свойств веществ в гомогенной системе в паровой фазе применяют уравнение состояния вещества (Менделеева—Клапейрона, Ван-дер-Ваальса и другие)- Процессы фазового перехода вещества из одного агрегатного состояния в другое описываются с помощью уравнения Клаузиуса—Клапейрона. [c.165]

    Теоретический подход к изучению свойств неидеальных растворов и газовых смесей основан на применении к ним уравнений состояния. Однако на этом пути исследователь встречается с непреодолимыми трудностями. Во-первых, общее уравнение состояния веществ получить невозможно, а частные уравнения состояния применимы не для всех систем. Во-вторых, термодинамические уравнения, которые используют для рещения различных задач уравнения состояния веществ, становятся громоздкими, а точность полученных результатов невелика. Кроме того, выбор уравнения состояния вещества для подстановки их в термодинамические уравнения для описания свойств реальных систем неоднозначен, так как зависит от произвола исследователя. Следует также отметить сложность поведения неидеальных систем вблизи критических условий — при критических давлениях и температурах, особенно в многофазной системе. [c.221]


    Описание свойств молекул при помощи метода МО Хюккеля [c.38]

    Подход метода молекулярных орбиталей к приближенному описанию свойств молекул заключается в следующем все электроны находятся на многоцентровых молекулярных орбиталях, охватывающих всю молекулу. Такие орбитали называют делокализованными. [c.93]

    При термодинамическом описании свойств реальных растворов (жидких или твердых) вместо концентрации, выраженной в молярных [c.271]

    V Сопоставление теорий МО, ВС и КП. Теория молекулярных орбиталей дает самый общий подход к описанию свойств комплексных соединений, объединяя идеи как теории валентных связей, так и теории кристаллического поля. Шести сг = -орбиталям октаэдрического комплекса в рамках теории валентных связей отвечают шесть а-связей, возникающих за счет донорно-акцепторного взаимодействия psp -гибридных орбиталей комплексообразователь и электронных пар шести лигандов (рис. 215). Что же касается молекулярных л - и [c.513]

    Для неидеальных растворов уравнение Рауля (XI 1.20) неприменимо, так как Р ф Р л и функции смешения неидеальных растворов не равны АУ" Ф 0 ДЯ" Ф 0. Для описания свойств реальных растворов вводят понятие активности [c.175]

    Здесь дан обзор процесса риформинга, включающий описание свойств исходного сырья, протекающих при риформинге реакций, катализаторов и рабочих параметров процесса. [c.136]

    Настоящая глава посвящена описанию свойств сырья для производства ЗПГ, включая твердые виды топлива (разные сорта угля и лигнита, кокса и антрацита), жидкое нефтяное топливо (сырую нефть и фракции, получаемые в процессе ее обычной переработки) и ряд жидких продуктов, иногда получаемых при очистке природного газа газового конденсата, состоящего из пропана, бутанов и так называемого природного (или газового) бензина (см.гл. 2). [c.62]

    Поляризационные представления оказались полезными для объяснения устойчивости, кислотно-основных и окнслительно-вос-сталовнтельных свойств комплексных соединений, но многие другие их свойства остались необъясненными. Так, с позиций электростатической теории все комплексы с координационным числом 4 должны иметь тетраэдрическое строение, поскольку именно такой конфигурации соответствует наименьшее взаимное отталкивание лигандов. В действительности, как мы уже знаем, некоторые по- добные комплексы, например, образованные платиной(И), построены в форме плоского квадрата. Электростатическая теория не в состоянии объяснить особенности реакционной способности комплексных соединений, их магнитные свойства и окраску. Более точное и полное описание свойств и строения комплексных соеди- нений может быть получено только на основе квантовомеханиче- ских представлений о строении атомов и молекул. [c.594]

    Чем выше темнература и ниже давление, тем более движе с частиц газа независимо друг от друга. В пределе, при давлении, стремящемся к нулю, становятся пренебрежимо малыми как взаимодействие между частицами, так и их собственный объем но сравнению с объемом, занимаемым газом. Такое воображаемое состояние вешества называется идеальным газом. Хотя идеаль о-газовое состояние является предельным, однако простота соответствующих ему законов, применимость их для описания свойств многих газов при низких давлениях и сравнительно высоких температурах делает представление об идеальном газе весьма полезным для практического применення. [c.73]

    При проектировании системы управления наиболее приемлемым подходом является разработка управляющей части системы на основании исследования свойств объекта управления. Для описания свойств объекта управления используется принцип математического моделирования [2]. Такой подход позволяет промоделировать поведение системы на различных режимах работы еще до изготовления реальной установки, а также выявить сильные и слабые стороны проекта. [c.223]

    Базовые понятия, подпонятия и абстрактные понятия описывают понятия (классы) предметной области (1) и (2) предназначены для иерархической классификации, (3) — для описания свойств и закономерностей, наследуемых экземплярами. Различия между ними в основном технические и позволяют пользователю управлять эффективностью работы программы, [c.238]

    Л = а описание свойств, которыми обладают элементы а ) [c.49]

    Ниже дано описание свойств неионогенных ПАВ, синтезированных в СССР на основе различных органических соединений — органических кислот, сложных эфиров, фенолов, спиртов, аминов и амидов кислот. При этом рассматриваются неионогенные ПАВ, полученные как только оксиэтилированием указанных органических веществ, так и присоединением к ним окисей пропилена и этилена (блоксополимеры окисей алкиленов). [c.96]

    Читая сообщения, Гей-Люссак отметил, что эмпирические формулы этих соединений идентичны, хотя описанные свойства совершенно различны. Так, в молекулах и цианата и фульмината серебра содержится по одному атому серебра, углерода, азота и кислорода. Гей-Люссак сообщил об этих наблюдениях Берцелиусу, который считался тогда самым выдающимся химиком в мире, но Берцелиуо не пожелал поверить в это открытие. Однако к 1830 г. Берцелиуо сам установил, что две органические кислоты — виноградная и винная,— хотя и обладают различными свойствами, описываются одной и той же эмпирической ( юрмулой (как теперь установлено, С НвОв). Поскольку соотношения элементов в этих различных соединениях было одинаковым, Берцелиус предложил называть такие соединения изомерами (от греческих слов Тао — равный, одинаковый и (херое — часть, доля). Его предложение было принято. В последующие десятилетия число открытых изомеров быстро росло. [c.75]

    Используемые для расчетон химических равновесий термодинамические соотношения, как легко видеть из приводимых в учебниках термодинамики выводов (см., например, [1, 2, 4]), основаны на применении уравнения состояния идеальных газов к описанию свойств реагирующих газовых смесей. Поэтому понятно, что применимость этих уравнений ограничивается только теми случаями, когда газовые смеси подчиняются уравнению состояния идеальных газов. В применении к реальным системам эти уравнения могут привести 1г некоторым неточностям, величина которых будет тем больше, чем больше отличаются свойства реагирующих веществ от свойств идеальных газов. [c.156]

    Промышленное получение азотной кислоты. Современные промышленные способы получения азотной кислоты основаны на каталитическом окнсле]]ии аммиака кислородом воздуха. При описании свойств аммиака (см. 137) было указано, что он горит Б кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение N113 в N0  [c.415]

    Следует, однако, помнить, что и плотность, и диэлектрическая проницаемость являются макрофизическими характеристиками веществ, так что необходима определенная осторожность при их использовании для описания свойств адсорбционных слоев. Дискретность структуры последних, геометрическая неоднородность подложки и ряд других факторов, проанализиро- [c.34]

    Дальнейшие упрош,ения и возможность применения аналитического метода расчета [77] появляются в случае постоянного коэффициента экстракции е. Подробное описание свойств, которыми должна обладать система при e= oпst, дано на стр. 117. Они остаются в силе без изменений и для противотока. Эти свойства следующие полная взаимная нерастворимость рафината и растворителя или же низкая концентрация экстрагируемого вещества В, постоянство коэффициента распределения т одновременно с наличием одного из первых двух свойств. [c.140]

    Г. Н. Льюис (1901 год) предложил для описания свойств неидеальных систем использовать формулы, полученные для идеального состояния веществ (идеальные законы), но вместо концентраций и давления в эти формулы предлагается вводить новые параметры, которые были названы активностью а (подставляется в формулы вместо концентраций С) и фугитив-ностью или летучестью / (подставляется в формулы вместо Р). [c.221]

    Сложность состава и строения нефтяных углеводородов требует от исследователей, работающих в этой области, глубоких современных знаний вопросов стереохимии и конформациопного анализа циклических соединений. Столь же необходимо умение разбираться в сложных вопросах термодинамической и кинетической реакционной способности углеводородов. Надо иметь в виду, что только высокий научный уровень исследований, базирующийся на использовании всех достижений современной органической химии, позволил добиться больших успехов в изучении различных природных объектов. Столь же высокий научный уровень необходим, очевидно, и для исследования химии нефти. Предлагаемая монография разбита фактически на две части. Первая из них (главы 1—6) посвящена описанию свойств индивидуальных углеводородов, вторая часть (главы 7 и 8) — исследованию нефтяных углеводородов. Впрочем, оба эти вопроса так тесно между собой связаны, что автор предпочел не проводить формального разделения монографии па части. [c.4]

    Гидролиз и конденсация ведутся в условиях и под действием реагентов, склонных давать линейные полимеры высокого молекулярного веса и не склонных давать перекрестные (кросс) полимеры. Пример гидролиза — выливанием (СНз)23Ю12 на поверхность раствора электролита сообщается в патенте [49]. Приводится описание свойств силиконового каучука [50,51] и указывается, что он сохраняет свойства каучука даже после 4 мес. нагрева до 400° F (204,44° С) и 48 час. нагрева до 575° F (301,66° С). С другой стороны, этот каучук сохраняет свою эластичность при охлаждении до —82° F (—27,78°С). При —90° F (—32,22" С) эластичность снижается, но все же продукт не стано- [c.475]

    Вс грсчаются, однако, и такие ситуации, когда описание свойств смсси наталкивается на значительные трудности. Суш,естнует немало смесей обычных компонентов, у которых зависимость свойств от концентрации имеет минимум или максимум такие свойства не поддаются априорному расчету, и их нельзя описать на основе свойств чистых компонентов. В качестве простого примера [30] укажем на смесь уксусной кислоты и воды, для которой зависимость плотности от концентрации имеет максимум. Опыт автора говорит о том, что такая ситуация сохраняется при всех температурах вплоть до критической температуры смеси, хотя концентраци , при которой имеет место максимум (или мт1имум), может меняться в зависимости от температуры. [c.174]


Смотреть страницы где упоминается термин Описание свойств: [c.69]    [c.119]    [c.107]    [c.215]    [c.2]    [c.134]    [c.83]    [c.265]    [c.622]    [c.261]    [c.164]   
Смотреть главы в:

Основные опасности химических производств -> Описание свойств




ПОИСК







© 2024 chem21.info Реклама на сайте