Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимерные тела

    Уравнения, устанавливающие связь между напряженностью внещних силовых полей деформируемостью полимерного тела и скоростями деформации, называются реологическими уравнениями состояния систем. Эти уравнения с определенным приближением могут описывать реальные свойства полимерных материалов так же, как известные газовые законы описывают свойства реальных газов. [c.126]


    Деформационная способность полимерных материалов, обусловленная полностью обратимым изменением валентных углов и межатомных расстояний в полимерном субстрате под действием внешних сил, характерна для проявления упругих свойств. Температура, ниже которой полимерное тело может деформироваться под действием внешних сил как упругое, называется температурой хрупкости Гхр. Действие внешних силовых полей может быть представлено (рис. 3.3, а) как всестороннее сжатие, сдвиг и растяжение. Вместе с тем всякая конечная деформация полимерного материала проявляется, с одной стороны, как деформация объемного сжатия (или расширения), характеризующая изменение объема тела при сохранении его формы (дилатансия), а с другой, - как деформация сдвига, характеризующая изменение формы тела при изменении его объема (см. рис. 3.3, 5). В связи с этим реологическое уравнение состояния должно описывать как эффекты, связанные с изменением объема деформируемого тела, так и влияние напряжений на изменение его формы. В общем случае деформация проявляется в двух видах как обратимая и как необратимая. Энергия, затрачиваемая на необратимую деформацию, не регенерируется. [c.127]

    Таким образом, имеет место существенно нестационарный характер процесса набухания, контролируемого сначала релаксационными явлениями, обусловливающими диффузию, а затем и самой диффузией растворителя в сополимер. Основу кинетики набухания составляет деформация физико-механических свойств сополимера под воздействием проникновения низкомолекулярного компонента в полимерное тело. [c.298]

    Аномалии в механических свойствах полимеров достаточно подробно рассмотрены в работах [2—5, 16, 17, 43, 48, 49]. Причины, вызывающие эти аномальные отклонения, кроются в свойствах и строении цепных макромолекул, а также в развитии тех или иных надмолекулярных структур. Исходя из современных представлений релаксационных явлений полимерных тел [16, 18, 42, 48], можно утверждать, что рассматриваемой системе полимер — растворитель при ограниченном набухании полимера с пространственной структурой присущи свойства, характерные как для жидкости, так и для твердого тела,— так называемые вязкоупругие свойства. Свойства вязкоупругости проявляются различными путями. Тело, не являющееся идеально твердым, не достигает постоянных значений деформации при постоянных напряжениях, а продолжает медленно деформироваться с течением времени (ползти). С другой стороны, не являющееся полностью жидким, тело при течении под действием постоянного напряжения может накапливать подводимую энергию, вместо того чтобы рассеивать ее в виде тепла. [c.308]


    Название данного раздела соответствует очень эффективной модели простой поверхности ослабления , предложенной Смитом [41]. Эта модель опирается на рассмотрение вязкоупругого поведения сплошных полимерных тел, т. е. на представление, которое должно сводиться согласно принципу температурно-временной суперпозиции внешних параметров нагружения-напряжения, скорости деформации и температуры к соответствующим молекулярным состояниям. Если критерий разрушения действительно имеет единые пределы молекулярной работоспособности, то построенные кривые приведенного напряжения Б зависимости от деформации при разрушении в различных экспериментальных условиях должны ложиться на одну обобщающую кривую (рис. 3.6). Эта концепция справедлива применительно к большому числу натуральных и синтетических каучуков и вулканизатов при однотипных механических йены- [c.73]

    Исследования структуры имеют целью не только выявление механизма процесса. Они способствуют разработке обоснованных эффективных методов и режимов модифицирования мембран для улучшения их проницаемости, селективности и прочностных свойств. Важность структурных исследований определяется тем, что они дают ответ на первый из основных вопросов, с которым и связано исследование механизма,— каким образом происходит перемещение молекул через полимерную мембрану. Ответ на второй вопрос — каким образом достигается селективность процесса разделения, очевидно, также связан с успехами этих исследований. Представления о глобулярно-пачечном строении полимерных тел [51—54] оказались весьма благотворными для объяснения многочисленных экспериментальных данных в различных областях физики, химии и физической химии полимеров, что убедительно свидетельствует о действительном их соответствии реальной структуре полимерных материалов. Основу этих представлений составляет предположение о том, что элементарными первичными надмолекулярными образованиями являются либо глобулы, либо пачки> макромолекул с различной степенью упорядоченности внутри пачки. [c.64]

    Соответственно, число способов упаковки макромолекул в полимерном теле весьма велико и физические свойства этого тела во многом зависят от того, каким образом оно было собрано из макромолекул и какие они при этом имели конформации. [c.13]

    Особенности структуры полимерных соединений. Свойства полимеров зависят не только от химического состава и строения макромолекул, но и от их взаимного расположения, т. е. от того, как вещество построено, как образована его структура. Макромолекулы в результате межмолекулярного взаимодействия могут образовать простейшие структурные формы, более сложные структурные образования и наивысшие формы упорядоченности. Различные структурные формы расположения макромолекул получили название надмолекулярных структур. Характерные особенности структуры полимерных тел, разнообразие структурных форм обусловлены прежде всего особенностями строения самих молекул большой длиной, способностью изгибаться и принимать различное положение. Сказывается также величина межмолекулярных и внутримолекулярных сил. [c.13]

    Особенности процесса растворения полимеров. Первой стадией растворения любого полимера является его набухание. Набухание— это процесс поглощения полимером низкомолекулярной жидкости, сопровождающийся увеличением объема полимера и изменением конформаций его макромолекул. Большие молекулы полимера характеризуются низкими значениями коэффициентов диффузии. Поэтому смешение осуществляется медленно, и его промежуточные стадии легко фиксируются. При этом благодаря способности макромолекул изменять свою форму растворитель на промежуточных стадиях растворения не только заполняет пустоты между отдельными звеньями (процесс, аналогичный капиллярной конденсации в твердых пористых телах), но и увеличивает эффективные радиусы полимерных клубков и расстояния между их центрами масс, не нарушая при этом сплошности полимерного тела. Последнее приводит к значительному увеличению объема полимерной фазы по сравнению с исходным. Набухший полимер фактически представляет собой раствор низкомолекулярной жидкости в полимере. [c.82]

    Структура химических волокон, пленок и других полимерных материалов предопределяется как комплексом свойств макромолекул соответствующих волокнообразующих высокомолекулярных соединений, так и способами их взаимной упаковки в полимерном теле (надмолекулярной организацией полимерного субстрата, морфологией полимерного материала). Как отмечалось выше, фундаментальным свойством, отличающим полимеры от низкомолекулярных соединений, является гибкость макромолекул. [c.89]


    Лабораторный анализ вынесенных парафиновых тел показал, что их групповой состав по сечению различен. При почти одинаковом содержании смол, парафинов и масел содержание воды и АМФ в центральной части парафино-полимерных тел в 2, а содержание механических примесей — в 5 раз больше, чем в периферийных частях. В вынесенных парафиновых шарах твердый осадок, нерастворимый в горячем бензине и бензоле, составлял 21 % веса. Этот осадок содержал твердые частицы песка, глины, окислов железа (продукты коррозии, окалины), кокса, частицы металла, сажи и др. Форма вынесенных тел-агломератов и их прочность были различны. [c.181]

    Удобным способом характеристики полимерных тел в аморфном состоянии является оценка их механических свойств при различных температурах. [c.126]

    Если в результате воздействия внешних сил на полимерное тело в нем происходит накопление внутренней энергии, а рассеяния ее не происходит, тело называется упругим. В случае, когда работа внешних сил полностью рассеивается, тело характеризуется как вязкое. Наконец, если в полимерном теле происходит под воздействием внешних сил лишь частичное накопление энергии, а остальная часть ее рассеивается, такое тело называют вязкоупругим (или упруго вязким). [c.126]

    Для полимерных тел выше Тс значения ц 0,5. [c.127]

Рис. 3.3. Схемы основных видов действия внешних силовых полей на полимерные тела Рис. 3.3. <a href="/info/1879192">Схемы основных видов</a> <a href="/info/1502838">действия внешних</a> <a href="/info/3639">силовых полей</a> на полимерные тела
    Для полимеров, находящихся в высокоэластическом состоянии, сохраняется ближний порядок во взаимном расположении сегментов макромолекул, но подвижность их существенно выше, нежели в стеклообразном состоянии время релаксации сокращается на 5-6 десятичных порядков. Модуль упругости полимерных тел, находящихся в высокоэластическом состоянии, снижается до 0,1-0,3 Мпа. Существенно изменяется и сжимаемость полимера. Если в стеклообразном состоянии она для различных волокнообразующих полимеров заключена в пределах (и5)10 2 Па , то в результате расстекловывания полимерного субстрата сжимаемость возрастает до (3-г6)10 Па .  [c.138]

    При чистом сдвиге деформируемый объем как бы растягивается, а диагональ АС (см. рис. 3.3, 6-2 ) перемещается параллельно самой себе, занимая положение ОБ. Это перемещение сопровождается удлинением диагонали ОВ на величину ВК. Поэтому вращения элементов среды при чистом сдвиге не происходит. Вместе с тем анализ трехмерной картины напряженного состояния полимерного тела при одномерном сдвиге приводит к необходимости учета возникновения нормальных напряжений aJ . [c.129]

    Важной характеристикой полимерных тел является временная зависимость их физических свойств. [c.130]

    С этих же кинетических позиций следует подходить и к описанию структуры макромолекул, а затем и полимерных тел. [c.25]

    Повышение температуры, приводя к интенсификации сегментального движения макромолекул, обусловливает снижение Ор. К такому же эффекту Приводит увеличение напряженности силового поля, приложенного к полимерному телу. [c.131]

    Соотношение этих составляющих определяется величиной приложенного напряжения а, скоростью деформации г/Л, температурой, а также физико-химическими свойствами системы полимер - среда, в которой проводится деформирование полимерного тела. [c.134]

    Наиболее вероятному состоянию полимерного тела соответствует максимальная энтропия  [c.138]

    При больших деформациях наблюдаются также уменьшение объема полимерных тел, уплотнение их структуры и выделение некоторого количества тепла, повышающего температуру образца на 1,5-2 град. [c.139]

    Создание однородного поля напряжений в условиях сдвига на практике реализуется относительно легко, а в случае растяжения требует множества ухищрений, поэтому большинство исследователей работают в условиях сдвигового поля. Оно создается либо с помощью ротационных систем (например, вращения цилиндра в цилиндре или конуса относительно плоскости) или длинных капиллярных трубок. Ротационные приборы подробно описаны в работе [51]. В предыдущем параграфе настоящей главы рассматривались вязкостные характеристики полимерных систем и лишь вскользь упоминались вязкоупругие свойства. Однако практически любая полимерная система способна при определенных условиях воздействия проявлять высокоэластическое деформационное состояние, в котором у нее наблюдаются большие обратимые деформации. Необратимые деформации у полимерных тел могут возникать уже при температурах, близких к температуре стеклования, но там они не играют основной роли. [c.175]

    Поэтому из-за цепного характера макромолекул, их возможности конденсироваться в полимерное тело в разных конформациях, и, наконец, из-за того, что даже элементарные движения отдельных участков макромолекул характеризуются временами т то, фактор времени при отклике полимерной системы на любое внешнее воздействие начинает играть особую роль. [c.14]

    Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Каргину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин строение полимеров характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин структура полимеров характеризует более детальные отличия молекулярной упорядоченности в полимерах. [c.18]

    Таким образом, говоря о структуре, или надмолекулярной организации, полимеров (НМО), можно в терминах заторможенной конфигурации определить ее как внутреннюю структуру, взаимное расположение в пространстве и характер взаимодействия (связи) между структурными элементами, образующими полимерное тело. В некоторых случаях это взаимодействие осуществляется через аморфную бесструктурную матрицу, которой может и не быть. [c.44]

    Термодинамические соотношения можно в отдельных случаях применять для полимерных тел с вязко-текучими свойствами. Деформация таких полимеров состоит практически из высокоэластической и пластической составляющих, так ка к чисто упругой деформацией можно пренебречь. В некоторых случаях удается обе составляющие деформации полностью разделить — например, при установившемся режиме течения. В последнем случае к высокоэластической составляющей деформации, зависящей не от времени, а только от приложенного напряжения, могут быть применены термодинамические соотношения. [c.110]

    В связи с наличием в полимерных телах надмолекулярных структур процесс рекристаллизации заключается в преобразовании не только пространственной решетки, но и надмолекулярных структур. При исследовании повторных одноосных деформаций полипропилена и гуттаперчи в направлениях, перпендикулярных предшествующим деформациям, было показано, что большие деформации осуществляются за счет преобразований надмолекулярных структур без заметного изменения первичной структуры полимера, о чем свидетельствуют рентгенографические данные [46]. [c.24]

    В вязкотекучем состоянии под действием внешних сил в полимерных телах развиваются необратимые деформации. Вместе с тем вязкому течению полимеров всегда сопутствуют и обратимые (высокоэластические) деформации, развитие которых обусловлено отклонением в процессе течения конформаций макромолекулярных цепей от равновесных. Например, изменение деформации образца полимера в вязкотекучем состоянии под действием постоянного на пряжения имеет сначала нестационарный характер, а затем ско рость деформации перестает зависеть от времени (рис. V. 16) Установление стационарности указывает на завершение релакса ционных процессов развития высокоэластической деформации Дальнейшее возрастание деформации обусловлено только вязким течением. [c.153]

    Резкая анизотропия формы макромолекул обусловливает возможность существования полимеров в ориентированном состоянии. Ориентация в большинстве случаев достигается путем растяжения полимерных тел. [c.178]

    Будучи гибкой, полимерная цепь непрерывно флуктуирует, приобретая всевозможные конформации. Множественность конформаций непосредственно связана с вязкоупругими свойствами полимеров и во многом определяет их высокоэластичпость. Молекулярная масса, характеризуемая степенью полимеризации, влияет на текучесть полимерных расплавов и растворов, а также на деформируемость и прочность полимерных тел. С ростом степени полимеризации механическая прочность и вязкость полимеров увеличиваются. С вязкостью полимерных веществ связаны релаксационные процессы, протекающие при различных механических воздействиях. Очевидно, что чем выше молекулярная масса, тем больше время, необходимое для устаповлеиия равновестюго состояния нри механическом воздействии на него. [c.48]

    Допустим, к полимерному телу в форме стержня длиной Ь приложено растягивающее напряжение о. Мгновенно возникающая деформация (при времени I 0) будет = АЫЬ. [c.399]

    Допустим, к полимерному телу в форме стержня длиной Ь приложено растягивающее напряжение сг. Мгно- [c.496]

    Форкгаровавие дваграммы связв процесса набухавия поламер-аых тел. Разобьем полимерное тело (гранулу, пластину) на ряд слоев. Совокупность отдельных звеньев образует макроцепь в пространстве (см. рис. 4.4). Последовательность связных диаграмм таких слоев в пространстве образует диаграммную сеть процесса набухания всего полимерного тела. Диаграмма с учетом правила знаков и операционной причинности представлена на рис. 4.5. [c.312]

    Почему полимерные тела, характеризуюшиеся большими значениями критерия Деборы, находятся при обычной температуре в стеклообразном состоянии, а малыми - в вязкотекучем  [c.157]

    Введение релаксационного спектра соответствует использованию интерлинга физики — теории колебаний для описания структуры и подвижности в полимерах. Пока мы говорили только, о макромолекуле, но тот же спектрометрический подход пригоден для любых полимерных тел с их сложной иерархией уровней структурной организации. Полезно бросить взгляд в обратном направлении , вернувшись от макромолекул к простым молекулам (детализацией — для упражнения — мы предлагаем заняться самим читателям). Как известно, они тоже располагают своими характеристическими спектрами, которые тоже выявляются при воздействии на них с разной скоростью только теперь это периодические воздействия и вместо времени воздействия мы вводим частоту V, впрочем, в квантуемых системах можно вернуться к импульсу и стрелке действия. При этом выявляется одна совершенно общая характеристика стрелки действия. Все релаксаторы (или осцилляторы — в оптическом диапазоне частот), расположенные в координатах д—х (х=1Н) слеза от стрелки действия, или Ха (см рис. 1.14), реагируют на воздействие неупругим образом, т. е. претерпевают внутреннюю перестройку, изменяют частоту и т. п. С п р а Б а от Тл ответ на воздействие упругий релаксаторы (или осцилляторы) не успевают отреагировать на воздействие в микромире это связано, например, с упругим рассеянием элементарных частиц в макромире, при достаточно больших силах и энергиях воздействия, это приводит к разрушению системы. [c.52]

    Ре1егИп А. Пластическая деформация полимерных тел с волокнистой структурой. Препринты международн. сим поз. по хим. волокнам. Калинин, 1974, №7, с. 39—72. [c.122]

    Термодинамические соотношения можно в отдельных случаях применять для полимерных тел с вязкотекучими свойствами. Деформация таких полимеров состоит практически из высокоэласти- [c.64]

    РЕЛАКСАЦИЯ МЕХАНИЧЕСКАЯ В ПОЛИМЕРАХ — изменение напряженного состояния полимера при переходе от неравновесного расположения элементов его структуры (цепных макромолекул, пачек макромолекул, микрокристаллов и др.) к равновесному. Р. вызывается механически и, в зависимости от режима действия, развивается в том или ином направлении. Вследствие Р. нарушаются законы Гука для упругих полимерных тел и закон вязкости Ньютона для текучих полимерных тел. В связи с этим, изучение явлений Р. имеет большое теоретическое и практическое значение. [c.213]

    Особенность полимерных тел заключается в их способности кристаллизоваться в результате растяжения и ориентации в высокоэластическом состоянии при температурах, при которых кристаллизация изотропного образца термодинамически запрещена. Высокоэластическая деформация сопровождается распрямлением макромолекул, обеднением их конформационного набора и, следовательно, уменьшением энтропии аморфной фазы на Д5эл или соответственно увеличением энтропии кристаллизации [см. (VI.1)] на то же значение. [c.184]

    Кристаллические (кристаллизующиеся) полимеры обладают значительным разнообразием морфологических форм, которые различаются как по строению, так и по размерам. Реальная кристаллическая структура в полимерных телах обладает значительной дефектностью. Нарушение кристаллического порядка происходит в результате стерических (наличие крупных боковых ответвлений) или кинетических (параметры процесса кристаллизации) факторов. Кроме того, в реальных кристаллических полимерах всегда присутствуют большие или меньшие количества незакристаллизо-ванной (аморфной) компоненты. [c.101]

    Данные, полученные в любом изотермическом режиме (в тем-лературном интервале переходной области), не перекрывают весь набор времен релаксации или запаздывания полимерного тела. В настоящее время разработан способ экстраполяции, в котором [c.127]


Смотреть страницы где упоминается термин Полимерные тела: [c.297]    [c.302]    [c.129]    [c.131]    [c.161]    [c.50]    [c.174]    [c.180]   
Смотреть главы в:

Высокомолекулярные соединения -> Полимерные тела




ПОИСК





Смотрите так же термины и статьи:

Ближний порядок в полимерных телах

Вязкоупругое полимерное тело

Дальний порядок в полимерных телах

Каргина и Слонимского модель полимерного тела

МЕТАЛЛЫ, СОЛИ, ПОЛИМЕРНЫЕ ТЕЛА

Максвелла полимерного тела

Модель полимерного тела

Подсостояния стеклообразного полимерного тела

Проявление высокоэластичности как самостоятельного типа деформации Усовершенствованная модель полимерного тела

Разрушение полимерного тела

Твердые тела полимерное строение

Тела полимерные также поли нория

Упруговязкое полимерное тело



© 2025 chem21.info Реклама на сайте