Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкоупругие модели сплошных сред

    Вязкоупругие модели сплошных сред [c.73]

    В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведение полимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред. [c.59]


    Прочность полимерных материалов приобретает все более актуальное значение. До появления кинетической точки зрения на разрушение полимеров придерживались представлений о разрушении исключительно с позиций механики упругих твердых тел, имеющих дефекты. Однако экспериментальные факты [33—36] доказывают существенную роль вязкоупругих релаксационных явлений при разрушении полимеров. В этой связи построение математической модели кинетики набухания, учитывающей релаксационные явления в полимере, актуально для нахождения благоприятных условий проведения процесса с целью уменьшения брака при производстве ионообменных материалов аналитического назначения (хроматографического и ядерного класса). При этом описание релаксационных явлений в полимерных материалах связывается с рассмотрением их как сплошных сред, которые по своим механическим свойствам занимают промежуточное положение между упругими твердыми телами и вязкими жидкостями (что приводит к возникновению явлений вязкоупругости). [c.300]

    Для интерпретации экспериментальных данных в качестве модели вязкоупругих свойств реальной сплошной среды выберем модель Кельвина — Фойгта с соответствующей диаграммой связи  [c.309]

    Диаграмма связи диффузионных и релаксационных явлений в материале сополимера, полученная простым присоединением диаграммы связи реологической модели вязкоупругого состояния полимера к фрагменту диаграмм связи, отображающего диффузионные явления сплошной среды, представлена на рис. 4.4. Построенная диаграмма замкнута относительно преобразований энергии в ней, увязывает макроскопическое движение элементарного объема системы с физико-химическими характеристиками ее макроструктуры. Поэтому синтез уравнений системы по ее диаграмме приводит к замкнутой системе уравнений процесса набухания сополимера с учетом движения реальной сплошной среды и пере- [c.309]

    Для получения количественной однозначной оценки свойств материала недостаточно измерения условных показателей его жесткости , податливости или вязкости , а необходимо воспользоваться какой-либо достаточно общей моделью механического поведения полимера как сплошной среды, измерить константы, входя щие в эту модель как основные количественные характеристики материала, и установить их взаимосвязь с его строением и составом. Такими общими простейшими моделями поведения среды может быть упругое (гуковское) тело, свойства которого определяются модулями упругости, вязкая (ньютоновская) жидкость, показателем поведения которой служит ее вязкость, и линейное вязкоупругое тело, характеризуемое набором значений времен релаксации и отвечающих им величин модулей (релаксационным спектром) или различными вязко-упругими функциями. Последняя модель наиболее важна для полимерных материалов, однако ее применимость ограничена областью малых деформаций и напряжений, в которой эти величины пропорциональны друг другу (т. е. связаны между собой линейно). [c.142]


    В вязкоупругих моделях сплошных сред, рассмотренных в данном разделе, используются теория высокоэластического состояния и принцип температурно-временной суперпозиции. При этом неявно принимается молекулярная природа вязко-упругого поведения материала, но явно не вводятся такие неконтинуальные понятия, как дискретность вещества, неравномерность структуры, упорядочение молекул, анизотропия молекулярных свойств, распределение молекулярных напряжений и накопление энергии деформации. Если отдельные акты молекулярного масштаба и неравномерность распределения напряжения или деформации незаметны или не представляют большого интереса, то вполне допустимо представление твердого тела как сплошной среды. [c.75]

    Изложенные выше представления об упругих телах, вязких жидкостях и линейных вязкоупругих средах являются теоретическим фундаментом современных концепций реологических свойств-полимеров. Они основаны па модельном описании поведения полимеров как сплошных сред в простейших условиях деформирования. -Так, модель упругого тела описывает совокупность равновесных состояний среды, модель вязкой жидкости — поведение материала в установившемся сдвиговом течении, модель вязкоупругого тела с линейной зависимостью между напряжениями и деформациями — различные режимы деформирования при малых (стрем ящихся к пулю) напряжениях, деформациях и скоростях деформаций. Все эти случаи являются крайними из многообразия возможных процессов деформирования, но вместе с тем они являются важнейшими, так как любые сложные теории реологических свойств полимерных систем должны удовлетворять закономерностям их поведения в заказанных простейших условиях. [c.103]

    Существенное обобщение модели КСР было достигнуто ее распространением на случай больпшх деформаций. Это потребовало введения дифференциальных операторов, рассматриваемых при анализе кинематики сплошной среды и использованных для построения нелинейных теорий вязкоупругости. Этим способом были получены все те же результаты, что и при обсуждений феноменологических моделей. Такой подход предполагает решение проблемы корреляции динамических и стационарных характеристик вязкоупругих свойств полимерных систем не в рамках собственно молекулярных представлений, а путем привлечения идей о геометрической нелинейности как причине наблюдаемых эффектов. Поэтому естественно, что применение яуманновской производной в модели КСР приводит к соотношению т] ( i) = TI (y) при = Y, а использование тензоров Грина и Фингера для описания больших деформаций — к получению соотношений, вытекающих из теории И. Пао. [c.308]

    Возрастание продольной вязкости при увеличении градиента скорости при растяжении вязкоупругого пористого клубка является следствием двух факторов — ориентационного механизма, аналогичного описанному выше для суспензии жестких эллипсоидов (но с той разницей, что анизотропия молекулярного клубка — вынужденная, создаваемая самим градиентом скорости и являющаяся в этом смысле деформационной анизотропией ), и релаксационного механизма, связанного с большими деформациями вязкоупругой среды и аналогичного тому, который приводит к возрастанию вязкости максвелловской жидкости с одним временем релаксации при больпшх деформациях. Количественные предсказания теории продольного течения суспензии вязкоупругих статистических клубков зависят от выбора модели самого клубка (ср, модели КСР и КРЗ с различными распределениями времен релаксации) и от способа учета больших упругих деформаций (ср. результаты применения различных дифференциальных операторов для описания реологических свойств сплошных сред). Поэтому теоретические результаты оказываются неоднозначными, хотя, в принципе, они позволяют объяснить и описать наблюдаемый характер функции X (г), исходя из представления о релаксационном спектре среды. [c.415]


Смотреть страницы где упоминается термин Вязкоупругие модели сплошных сред: [c.50]   
Смотреть главы в:

Разрушение полимеров -> Вязкоупругие модели сплошных сред




ПОИСК





Смотрите так же термины и статьи:

Вязкоупругие среды

Вязкоупругость

Сплошная среда



© 2024 chem21.info Реклама на сайте