Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутации обратные, или реверсии

    Обратные мутации и реверсии. Из сказанного выше становится ясно, что у мутанта может произойти обратная мутация, в результате которой восстановятся свойства дикого типа. Об истинной обратной мутации говорят лишь в тех случаях, когда вторая мутация точно восстанавливает исходный генотип, т.е. когда измененный при первой мутации триплет будет вновь кодировать ту же аминокислоту, что и раньше. Ес- [c.442]


    Индукция обратных мутаций у мутантов Т4г П, способных к обратной реверсии [c.323]

    Высокая разрешающая способность этого подхода, благодаря селективной методике, позволяет количественно оценить даже самые редкие рекомбинационные события, а это дает возможность измерять расстояние по карте для любой пары мутаций. (Единственным ограничением этого метода является частота обратных мутаций, или реверсий , к дикому типу. Эта частота составляет примерно 0,0001%. Таким образом, чтобы достичь минимального уровня измерений, превышающего в 10 раз фон спонтанных мутаций, можно измерять только рекомбинационные частоты выше 0,001%.) [c.17]

    Мутации, инактивирующие ген,-это прямые мутации. Вызванное ими повреждение может быть устранено в результате обратных мутаций, которые подразделяются на два типа. Точное восстановление исходной структуры называют истинной обратной мутацией (истинной реверсией). Например, если пара А—Т заменена парой О—С, другая мутация, восстановившая пару А—Т, восстановит и последовательность дикого типа. Однако эффект первой мутации может быть компенсирован мутацией в другой части гена. Такие мутации называют вторичными реверсиями. Например, замена одной аминокислоты может нарушить функцию гена вторичное же изменение может компенсировать первое и восстановить активность белка. [c.41]

    Чем отличаются обратные мутации и реверсии  [c.317]

    Легко понять, по какой причине мутагенные аналоги оснований индуцируют как прямые, так и обратные мутации первого типа. Бромурацил, например, включившись вместо тимина в полинуклеотидную цепь фаговой ДНК, значительно повышает вероятность замен на уровне матрицы, ибо он незаконно спаривается во время репликации с гуанином, который благодаря этому становится в синтезируемой реплике на место, принадлежащее аденину. Однако тот же бромурацил индуцирует и обратную мутацию, в которой мутантная пара /гуанин — ОМЦ вновь заменяется исходной парой аденин—тимин.Это происходит вследствие резкого повышения вероятности замены на уровне субстрата, при которой в синтезируемую реплику включается бромурацил (а, значит, в следующих циклах репликации и тимин), незаконно спаривающийся с гуанином, находящимся в мутантном участке. Таким образом, первоначальное предположение Уотсона и Крика о появлении спонтанных мутаций вследствие способности пуриновых и пиримидиновых оснований к таутомеризации, очевидно, правильно объясняет происхождение лишь тех 10% спонтанных мутантов, которые несут мутации первого типа, а также спонтанную реверсию к дикому типу г мутантов гП первого типа (ревертирующих спонтанно с гораздо более низкой частотой, нежели в присутствии мутагенных аналогов оснований). [c.324]


    В дальнейшем, однако, более детальные исследования мутаций, индуцируемых акридиновыми красителями, показали, что мутации второго типа соответствуют не предложенным Фризом трансверсиям, а вст.авкам или делециям одной или нескольких пар оснований в цепи ДНК. Но из этого не следует, что трансверсии в ДНК вообще не возникают. Они возникают, но относятся к мутациям первого типа и, следовательно, индуцируются и дают реверсии под действием мутагенных аналогов оснований. Большинство гП-мутантов, которые не дают обратных мутаций как спонтанно, так и в присутствии мутагенов, представляют собой про- [c.324]

    Использование множественных ауксотрофов гарантирует, что колонии дикого типа, способные к росту на минимальной среде, возникают именно в результате рекомбинации, а не вследствие обратных мутаций. Если штамм, ауксотрофный по одной аминокислоте, ревертирует к дикому типу с частотой 1 10 , то появление колоний дикого типа на минимальной среде можно расценить и как результат реверсии, и как результат рекомбинации. Если же мутант ауксотрофен по двум аминокислотам, то частота реверсии к дикому типу должна составлять 10 10 = = 10 . Однако, при использовании таких двойных ауксотрофов в эксперименте колонии дикого типа на минимальной среде образовы- [c.232]

    Важной характеристикой мутантов является их способность к реверсии, т. е. обратному мутированию к исходному фенотипу. Мутанты, которые появляются в результате реверсии, называются ревертантами. При истинных обратных мутациях в ДНК восстанавливается исходная последовательность оснований. Так ревертируют точковые мутации — замены оснований, вставки или выпадения одного или нескольких нуклеотидов. [c.71]

    Реверсии. Иногда говорят об обратных мутациях, однако очевидно, что они представляют собой только часть реверсий, поскольку в действительности широко распространены так называемые супрессорные мутации (см. гл. 16). [c.293]

    Ревертант возник в результате обратной мутации по тому же самому нуклеотиду (истинная реверсия)  [c.61]

    Другой подход к созданию стабильных мутантов заключается в использовании делеционных мутаций, которые должны быть стабильными, так как они не подвергаются реверсиям и вряд ли угнетаются новыми мутациями на другом участке вирусного генома. По этой причине в настоящее время предпринимаются усилия для получения стабильных делеционных мутаций, которые делали бы вирус достаточно дефектным, для того чтобы он стал аттенуированным, но не настолько дефектным, чтобы он потерял жизнеспособность. Генетическая хирургия этого типа с использованием рестрикционных эндонуклеаз может быть осуществлена только на молекуле ДНК. Следовательно, вирусные геномы, состоящие из РНК, должны быть транскрибированы в ДНК, а затем в этой форме их можно подвергать манипуляциям. Это ставит нас перед трудной задачей транскрибирования мутантной ДНК в такую РНК, которую можно перенести обратно в инфекционный вирус. [c.174]

    Еще одно важное применение гИ-мутации нашли при исследовании молекулярного механизма мутационного процесса. Бензер понял, что изучение природы событий, ведущих к образованию прямых мутаций, г — -гП, можно значительно облегчить, если исследовать обратные мутации или реверсии, гН —большого числа гН-мутантов разного происхождения. Бензер совместно с Э. Фризом отобрал сотни гН-му-тантов фага Т4, часть которых возникла спонтанно, а часть — под действием того или другого из рассмотренных выше мутагенов. Затем для каждого из этих мутантов была измерена частота, с которой они мутируют обратно к дикому типу как спонтанно, так и под воздействием мутагенных аналогов оснований и акридиновых красителей. Для этого лизат соответствующим образом обработанной бактериальной культуры, зараженной / П-мутантом фага, высевали на индикаторный газон штамма К, на котором могут расти только ревертанты г+. Эти исследования дали следующие результаты. Во-первых, спонтанные мутанты гП характеризуются чрезвычайно широким спектром частот спонтанных обратных мутаций некоторые мутанты ревертируют к состоянию rlV с высокой частотой, порядка 10" на фаг на одно удвоение, другие — с очень низкой, порядка 10 на фаг на одно удвоение. Между этими крайними значениями наблюдаются и промежуточные значения, образующие практически непрерывный спектр. Кроме того, примерно у 10% спонтанных мутантов вообще не обнаруживается реверсий. Из всего этого следует, что различные спонтанные мутации rll приводят к совершенно разным изменениям в последовательности нуклеотидов, в результате чего для восстановления исходной структуры дикого типа необходимы совершенно разные молекулярные события. [c.322]

    По влиянию на экспрессию генов мутации разделяют на две категории мутации типа замен пар оснований и типа сдвига рамки считывания (й-атезЫЛ). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трем, что связано с триплетностью генетического кода. Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Молекулярно-генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны. [c.278]


    По происхождению мутации делятся на спонтанные (неконтролируемые) и индуцированные (контролируемые). Первые возникают в результате неконтролируемого влияния каких-то естественных факторов (радиация, температура и т. д.). Направленное использование мутагенов приводит к возникновению индуцированных мутаций. Многими экспериментами четко показано, что мутации возникают независимо от условий среды обитания, т. е. не направленно. Мутации возникают в основном как ошибки репликации ДНК. Выделяют следующие типы мутаций перестройка хромосом, перестройка генома клетки грибов и водорослей (полиплоидия, гаплоидия, гетероплоидия), внутригенные изменения (прямые мутации, реверсии, обратные мутации). [c.102]

    Запаздывающее проявление мутаций. Если в гаплоидной клетке произойдет реверсия, превращающая ауксотрофную мутантную клетку в прототрофную, то такая обратная мутация сразу проявится в феноти пе. Восстановление способности вырабатывать определенный фермент можно в надлежащих условиях тотчас же распознать. Иначе обстоит дело с мутациями, приводящими, наоборот, к ауксотрофному состоянию, например к утрате способности синтезировать определенную аминокислоту. Такие мутации удается распознать лишь по прошествии периода, включающего несколько клеточных генераций. Запаздывающее проявление объясняется в данном случае тем, что, хотя мутация и делает невозможным синтез необходимого фермента, еще продолжает какое-то время действовать фермент, синтезированный ранее. Новый признак проявится лишь тогда, когда в результате клеточных делений произойдет достаточное разбавление этого фермента. С запаздывающим изменением фенотипа приходится также считаться при выявлении фагоустойчивых бактерий. Если фагочувствительные бактерии приобретают устойчивость в результате мутации, ведущей к утрате способности синтезировать особое рецепторное вещество, то эта устойчивость выявится лишь тогда, когда в результате ряда клеточных делений это вещество будет в достаточной мере разбавлено. [c.448]

    У всех мутантов, приведенных на этой таблице, изменены разные участки ДНК фага, так как каждая мутация локализуется в разных точках карты г —области, изображенной на фиг. 150. Кроме того, все они способны спонтанно давать обратные мутации. У некоторых мутантов частота реверсий в присутствии мутагенных аналогов оснований оказалась почти равной частоте спонтанных реверсий очевидно, что у таких мутантов эти мутагены неспособны индуцировать обратные мутации. У других частоты реверсий в присутствии мутагена были намного выше — в десятки, сотни и даже тысячи раз. Эти мутанты, следовательно, дают индуцируемые реверсии. Из табл. 20 видно, что практически у всех мутантов г1, возникших из дикого типа Т4 под действием бромурацила, 2-аминопурина, гидроксиламина и азотистой кислоты, а также у большинства мутантов, индуцированных этилэтансульфонатом, можно индуцировать реверсии с помощью мутагенных аналогов оснований. Однако практически ни один из мутантов, индуцированных профлавином, не ревертирует к дикому типу под действием мутагенных аналогов оснований. Из спонтанных же мутантов лишь около 10% ревертирует в присутствии этих мутагенов к состоянию г.  [c.323]

    Поскольку 2-аминопурин, 5-бромурацил и азотистая кислота индуцируют как прямые, так и обратные мутации, с помощью этих мутагенов нельзя получить лищь транзиции G -> АТ или АТ -> G . Гидроксил-амин, напротив, воздействует только на цитозин, переводя его в форму, способную к спариванию с аденином (рис. 20.7). Это приводит к направленным мутациям G ->AT. Гидроксиламин не способен индуцировать обратные мутации, однако такие мутации могут индуцироваться мутагенами, действующими в обоих направлениях. Описанный механизм действия 2-аминопурина подтверждает анализ аминокислотных замен белка триптофансинтетаза А Е. oli, вызываемых 2-АП-индуцированными реверсиями специфических мутаций (рис. 20.8). [c.13]

    Может также быть использован и альтернативный двухступенчатый процесс, приводящий к обмену последовательностями между плазмидой и космидой. При использовании подходящей системы селекции или переноса космида или плазмида может быть получена раздельно. Поэтапно, например, можно ввести мутации, индуцированные в коротком районе гена, клонированного в упаковывающейся плазмиде, обратно в космиду. Наоборот, можно перенести последовательности из космиды в плазмиду для дальнейшего анализа. Как показано на рис. 3.4, такой процесс особенно хорошо контролируется в двухэтапном варианте метода, когда исходная маркерная последовательность (например, /ас-оператор) вводится в результате двойной рекомбинации в тот локус космиды, который должен быть мутагенизирован. Обмен этой последовательности на последовательности, несущие желательную мутацию, легко обнаружить с помощью теста на присутствие или отсутствие /ас-оператора (см. методику получения реверсий). [c.86]

    Реверсия влияет на урожай вируса после заражения при непермиссивной температуре, но в этом случае потомство имеет фенотип дикого типа. Дополнительно к обратной мутации в исходном сайте (реверсионная мутация) мутация в другом сайте генома может случайно привести к утрате ts-фенотипа (супрессорная мутация . Супрессорная мутация может происходить в том же самом, что несет ts-повреждение, или в ином гене. Скорость реверсии колеблется, но обычные частоты для мутантов вируса гриппа составляют 10 —10 4, что значительно превышает те меры предосторожности, которые необходимы при пассировании пулов мутантов без частых проверок сохранения ts-фенотипа. С. S holtissek и S. Spring [234] изучали скорость реверсии ts-мутантов с повреждениями в различных сегментах РНК. Авторы обнаружили, что скорости реверсии для сегментов 1, 2, 3 и 5 (гены, кодирующие три белка Р и NP) превышают скорости реверсии для сегментов 4 и 6, кодирующих гликопротеиды НА и NA соответственно. Сравнительное изучение других групп ts-мутантов не проводилось. [c.193]


Смотреть страницы где упоминается термин Мутации обратные, или реверсии: [c.154]    [c.111]    [c.154]    [c.155]    [c.353]    [c.431]    [c.13]    [c.42]    [c.112]    [c.47]    [c.88]   
Молекулярная генетика (1974) -- [ c.154 , c.322 , c.324 , c.326 ]




ПОИСК







© 2025 chem21.info Реклама на сайте