Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репликация в ошибки

    Исправление ошибок. ДНК-полимеразы могут выявлять и исправлять ошибки, тогда как РНК-полимеразы такой способностью, по-видимому, не обладают. Поскольку ошибка даже в одном основании как при репликации, так и при транскрипции может привести к ошибке в синтезе белка, можете ли вы дать биологическое объяснение этому поразительному различию  [c.925]

    З-Ю п. н. Оказывается, у всех организмов точность работы репликативной машины (включающей не только ДНК-полимеразы, но и другие белки см. ниже) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых — механизм коррекции. [c.47]


    Смещение в комплементарности пар, или ошибка репликации может происходить по другой схеме [c.219]

    Нормальное размножение клеток требует высокой точности копирования ДНК-матрицы. Генетический материал живых организмов имеет огромные размеры. Даже у бактерий ДНК-полимераза должна практически безошибочно скопировать молекулу ДНК длиной около 3-10 п. н. Оказывается, у всех организмов точность работы репликативной машины (включаюш.ей не только ДНК-полимеразы, но и другие белки см. ниже) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых — механизм коррекции. [c.47]

    Очень важно отметить, что процесс репликации протекает со значительно более высокой степенью точности, чем процессы транскрипции и трансляции. Частые ошибки в репликации подвергли бы большому риску сохранность видов [c.908]

    ДНК-полимеразы проверяют комплементарность каждого нуклеотида матрице дважды один раз перед включением его в состав растущей цепи и второй раз перед тем, как включить следующий нуклеотид. Очередная фосфодиэфирная связь образуется лишь в том случае, если последний (З -концевой) нуклеотид затравки комплементарен матрице. Если же на предыдущей стадии полимеризации произошла ошибка (например, из-за того, что нуклеотид в момент полимеризации находился в необычной таутомерной форме), то репликация останавливается до тех пор, пока неправильный нуклеотид не будет удален. Некоторые ДНК-полимеразы обладают не только полимеризующей, но и 3 -экзонуклеазной активностью, "Которая отщепляет не спаренный с матрицей нуклеотид затравки. После чего полимеризация восстанавливается, от механизм, коррекция, заметно увеличивает точность работы ДНК-полимераз. Мутации, нарушающие З -экзонуклеазную активность ДНК-полимеразы, существенно повышают частоту возникновения прочих мутаций. Напротив, мутации, приводящие к усилению экзонуклеазной актив- ности относительно полимеризующей, снижают темп мутирования Генетического материала. [c.47]

    Спонтанные генные мутации определяются ошибками при репликации ДНК, возникающими вследствие теплового движе-иия атомов и молекул. Очевидно, что ошибки транскрипции и трансляции не наследуются. [c.283]

    Процесс транскрипции находится в клетке под строгим контролем, поэтому имеет место как неодинаковое транскрибирование во времени разных участков ДНК (генов), так и неодинаковая скорость, с которой гены могут транскрибироваться. В результате количество молекул иРНК в клетке, комплементарных разным генам, сильно различается. Хотя в целом механизмы синтеза ДНК и РНК сходны, процесс транскрипции не обладает той степенью точности, которая характерна для репликации ДНК. Однако поскольку иРНК не способна к самовоспроизведению, возникающие при ее синтезе ошибки в последующих клеточных генерациях не воспроизводятся и, следовательно, не могут наследоваться. [c.142]


    Если ошибка синтеза не устраняется системами репарации, то неизбежна деформация дуплекса и искажение генетической программы. Такие сохраняющиеся при репликации изменения ДНК носят название мутации. Они могут быть спонтанными и индуцированными. Частота спонтанных мутаций невелика и составляет всего 10 —10 на клетку. В основном имеют место мутации, обусловленные действием внешних факторов физических (радиация), биологических (вирусы) и чужеродных химических веществ на генетический аппарат клеток. Наиболее многочисленными и опасными являются мутагены окружающей среды. Загрязнение воды и воздуха различными химическими отходами промышленных предприятий, химическими средствами защиты растений отрицательно сказывается на генетической программе всех живых организмов. В последние годы установлено, что ряд пищевых красителей, стабилизаторов и вкусовых добавок обладает выраженной мутагенной активностью, что привело к значительному ужесточению требований, связанных с применением химических веществ в пищевой промышленности. Многие лекарственные вещества также воздействуют на генетический аппарат клеток и должны подвергаться специальным генетическим испытаниям. [c.455]

    Химическое изменение оснований. Некоторые мутагенные вещества действуют путем химического изменения содержащихся в ДНК оснований, что приводит к ошибкам репликации. Вполне понятное изменение вызывает нитрит. Азотистая кислота дезаминирует аденин, гуанин или цитозин без разрыва или каких-либо других изменений полинуклеотидной цепи. В результате замещения аминогруппы гидроксильной группой аденин превращается в гипоксантин и спаривается с цитозином вместо тимина, что приводит к мутации АТ СС. Если цитозин дезаминируется в урацил, то он спаривается с аденином вместо гуанина, и это ведет к мутации СС -АТ. Будучи превращен в ксантин, гуанин по-прежнему спаривается с цитозином, т. е. дезаминирование С не вызывает мутации. Гидроксиламин вступает в реакцию главным образом с цитозином и изменяет его так, что тот спаривается с аденином значит, он тоже вызывает мутации СС ТА. [c.444]

    Из уровня спонтанных мутаций у бактерий в расчете на одно поколение рассчитано, что вероятность одной репликационной ошибки при синтезе ДНК составляет порядка 10 . Эту величину можно рассматривать как отношение скоростей реакций правильной репликации [c.194]

    ВЫВОД, ЧТО, по-видимому, код действительно является триплет-ным, причем кодирование начинается от определенной точки нуклеиновой кислоты. При этом большая часть трехбуквенных комбинаций соответствует определенным аминокислотам и лишь небольшая часть триплетов относится к бессмысленным. Число триплетов равно 4-4-4 = 64, т. е. значительно больше числа аминокислот. Некоторые из них, по-видимому, кодируют одну и ту же аминокислоту, т. е. код является вырожденным. Этот вывод согласуется с обнаружением в настоящее время двух и более типов растворимых РНК, специфичных к одной и той же аминокислоте. Вырожденность генетического кода может способствовать выживанию организма. Действительно, в случае невырожденного кода ошибка при репликации ДНК или при транскрипции должна скорее приводить к появлению бессмысленного триплета, чем в случае вырожденного кода. Следовательно, при невырожденном коде ошибки чаще вызывали бы прекращение синтеза соответствующего белка или образование незаконченных белковых цепей. Напротив, в случае вырожденного кода ошибки должны чаще приводить просто к замене одной аминокислоты на другую, что, как правило, не имеет серьезных последствий. [c.376]

    Как в прокариотических, так и в эукариотических клетках содержатся ферментные системы, способные исправлять ошибки репликации и различные формы повреждения ДНК, вызываемые гидро- [c.990]

    Г. Е. Фрадкин. После обработки фаговой популяции гидроксиламино.м последний при помощи диализа удалялся из вирусной суспензии. Следовательно, во время облучения гидроксиламин в среде отсутствовал. Предварительная модификация цитозиновых остатков в ДНК фага лямбда, вызываемая гидроксиламином (предположительно образование 4—5-дигидро-4-гидро-ксиламиноцитозина), действительно повышает радиочувствительность фаговой популяции в условиях преобладания непрямого эффекта излучения. Мы полагаем, что механизм повышения радиочувствительности сводится к нарушению специфического процесса комплементарного спаривания азотистых оснований во время репликации фаговой ДНК внутри клетки. В последних рабо тах Брауна, Филипса с соавторами химическими методами установлено, что цитозин, предварительно обработанный гидроксиламином, спаривается не с гуанином, а с аденином. Вследствие этого во вновь образованной ДНК происходят единичные замены гуанина на аденин. До тех пор, пока эти замены не выходят за пределы связанных серий однозначных кодонов, они не сказываются на информационных свойствах ДНК фага. Однако эти единичные замены понижают эффективность механизма, исправляющего ошибки включения, за счет уменьшения резерва однозначны кодонов или, иными словами, за счет уменьшения степени вырожденности структурного кода. Мы не видим большой сложности в этом объяснении, к которому мы сознательно прибегли для освещения возмол<ных молекулярных механизмов, лежащих в основе скрытых повреждений, связанных с тонкими сдвигами в величинах водородных сил в химически модифицированных азотистых основаниях. Как известно, сенсибилизация может обусловливаться уменьшением степени прочности первичной структуры ДНК вследствие лабилизации эфирно-фосфатных связей. Однако при использовании в качестве модифицирующего агента гидроксиламина этот второй механизм отсутствует, так как химическими исслг- [c.173]


    Включение или утрата отдельных пар оснований. Профлавин и другие акридиновые красители действуют по-иному. Вероятно, молекула акридина внедряется между соседними основаниями цепи ДНК и увеличивает расстояние между ними (интеркаляция). Такое пространственное изменение при репликации ДНК может вызывать ошибки двух типов- [c.444]

    НО редко, он может образовать пару не с аденином, а с гуанином. Это в свою очередь приведет к ошибке при включении или при репликации, заключающейся в замене пары А — Т на Г — Ц и наоборот. [c.218]

    В 1959 г. Д. Пратт сумел показать, что большинство, если не все бромурациловые ревертанты г+, образуемые мутантами гП (которые были индуцированы аналогами оснований), возникают в виде гетерозигот гП/г" , которые позднее расщепляются на гомозиготные ревертанты г" ". Чтобы продемонстрировать это, к бактериям, зараженным мутантным фагом Т4гП, непосредственно перед окончанием скрытого периода внутриклеточного развития фага добавляли бромурацил и первые инфекционные частицы, появившиеся в клетках непосредственно после окончания скрытого периода, высвобождали путем искусственного лизиса клеток. Такая методика постановки опыта гарантировала, что все ревертанты / +, возникшие и извлеченные из фонда предшественников фаговой ДНК во время короткого воздействия мутагена, образовались исключительно в самом последнем цикле репликации. Ошибка копирования, восстановившая у них в соответствующем участке ДНК генетическую информацию дикого типа г+, произошла настолько поздно, что больше и и одного цикла репликации произойти уже не могло (а это значит, что не могло произойти и расщепления на гомозиготные мутантные структуры). Такого рода опыты показали, что свыше 80% всех ревертантов г, возникших в результате кратковременного контакта с бромурацилом, действительно представляет собой мутационные гетерозиготы, несущие как исходный аллель г, так и ревертировавщий к дикому типу аллель г" . Следовательно, в полном соответствии с механизмом Уотсона и Крика и вопреки механизмам, предусматривающим консервативное распределе- [c.325]

    Нетрудно видеть, что в тонком механизме репликации и синтеза белков произвол в расположении частиц сведен к минимуму. Этот матричный процесс является низкоэнтропийным. Ошибки в размещении аминокислот в пептидных цепочках составляют по приблизительной оценке 1 на 10 . В то же время, если бы синтез белков происходил на примитивной матрице, на которой концентрация тех или иных компонентов и их относительное расположение в значительной мере определялись бы случайностями окружающей обстановки, нельзя было бы ожидать воспроизводимости синтеза того или иного белка и, в частности, того белка, от структуры ко- [c.393]

    Репликаза фага Q способна in vitro синтезировать цепи, полностью комплементарные как плюс-, так и минус-молекулам вирусной РНК. Система, однако, специфична для вирусной РНК и не может копировать никаких других полинуклеотидов. Возможно, что для инициации процесса репликации нужно, чтобы на З -конце имелись определенные последовательности. В пробирке репликация протекает с ошибками, такими, в частности, как преждевременная терминация цепи и неправильное спаривание оснований. В результате происходит образование мутантных форм РНК, что дает возможность получать молекулы РНК, размеры которой будут значительно меньше, чем у вирусной РНК, и которые будут при этом легко реплицироваться репликазной системой фага Q . Была установлена нуклеотидная последовательность одного из таких фрагментов, включающего всего лишь 114 нуклеотидов . [c.245]

    Разные аллели одного и того же Г. возникают благодаря мутациям-илслецуемьш изменениям в структуре исходного Г. В норме Г. чрезвычайно стабилен и при удвоении хромосом во время репликации ДНК воспроизводится совершенно точно вероятность ошибки не превышает 10" . Мутации происходят редко и обычно влекут за собой неблагоприятные последствия для организма, т. к. нарушается его способность синтезировать нормальный белок. Однако в целом это явление играет положит, роль накопление редких полезных мутаций создает основу генетич. изменчивости, необходимой для эволюции. [c.517]

    Особый класс М. составляют соед., представляющие собой аналоги оснований ДНК-5-галогенурацилы, 2-амино-и 6-метиламинопурины н др. Галогенурацилы включаются в ДНК при матричном синтезе вместо тимина, 2-амино-пурин-вместо аденина. Вследствие различий в положении кетоенольного равновесия у тимина и галогенурацилов (при включении последних в ДНК) увеличивается частота ошибочных спариваний оснований и возникают ошибки при репликации. [c.152]

    Равновесие между созидательными возможностями выбора среди специфических оснований в ДНК (созидательные мутации) и точностью синтеза белков (поддерживающих жизнь организма) является основой эволюции. Ферменты, которые заряжают тРНК специфической аминокислотой, обладают очень низкой вероятностью ошибки, порядка 1 Ю" для гомологичных аминокислот. При репликации точность даже выше, и величина ошибки редко превышает 1 на 10.  [c.212]

    К настоящему времени у эукариот, как и у бактерий (см. ранее), открыто несколько ДНК-полимераз. В репликации ДНК эукариот участвуют два главных типа полимераз — а и б. Показано, что ДНК-полимераза а состоит из 4 субъединиц и является идентичной по структуре и свойствам во всех клетках млекопитающих, причем одна из субъединиц оказалась наделенной праймазной активностью. Самая крупная субъединица ДНК-полимеразы а (мол. масса 180000) катализирует реакцию полимеризации, преимущественно синтез отстающей цепи ДНК, являясь составной частью праймасомы. ДНК-полимераза б состоит из 2 субъединиц и преимущественно катализирует синтез ведущей цепи ДНК (см. далее). Открыта также ДНК-полимераза г, которая в ряде случаев заменяет б-фермент, в частности при репарации ДНК (исправление нарушений ДНК, вызванных ошибками репликации или повреждающими агентами). Следует отметить, что в эукариотических клетках открыты два белковых фактора репликации, обозначаемых RFA и RF . Фактор репликации А выполняет функцию белка—связывание одноцепочечной ДНК (наподобие белковых факторов связывания разъединенных цепей ДНК при [c.480]

    Этап HI — терминация синтеза ДНК —наступает, скорее всего, когда исчерпана ДПК-матрица и трансферазные реакции прекращаются. Точность репликации ДНК чрезвычайно высока, возможна одна ошибка на 10 трансферазных реакций, однако подобная ошибка обычно легко исправляется за счет процессов репарации. [c.486]

    Такие системы, достигшие определенного уровня сложности, наталкиваются на границу генетически переносимого количества информации. Оно составляет около 10 бит. Оптимальное значение ошибки при репликации нуклеиновой кислоты — 10 . Это — системно-обусловленная граница. Ее преодоление было достигнуто в нрироде созданием пола и геыегической рекомоина- [c.549]

    Приближенная модель репликации ДНКизображена на рис. 2.11. Из приведенной схемы видно, что репликация точно воспроизводит прежнюю (исходную) структуру ДНК. Но если произошла ошибка в процессе копирования (мутация), то она будет с предельной точностью копироваться при последующих репликациях изменившейся ДНК. Показано, что участки ДНК, содержащие скопления нуклеотидов, обладают повышенной склонностью к спонтанным мутациям [22]. [c.94]

    По происхождению мутации делятся на спонтанные (неконтролируемые) и индуцированные (контролируемые). Первые возникают в результате неконтролируемого влияния каких-то естественных факторов (радиация, температура и т. д.). Направленное использование мутагенов приводит к возникновению индуцированных мутаций. Многими экспериментами четко показано, что мутации возникают независимо от условий среды обитания, т. е. не направленно. Мутации возникают в основном как ошибки репликации ДНК. Выделяют следующие типы мутаций перестройка хромосом, перестройка генома клетки грибов и водорослей (полиплоидия, гаплоидия, гетероплоидия), внутригенные изменения (прямые мутации, реверсии, обратные мутации). [c.102]

    Ошибка в одном основании при репликации ДНК, если она не исправлена, приведет к тому, что одна из двух дочерних клеток, а также все ее потомки будут содержать измененную хромосому. Ошибка в одном основании, совершенная РНК-полимеразой, повлечет за собой синтез некоторого количества неправильных копий одного белка. При этом, поскольку пул мРНК в клетке быстро обновляется, большинство молекул этого белка будет нормальным. Потомство такой клетки тоже будет нормальным. [c.1004]

    Анализ приведенных выше результатов дает возможность написать для преобладающих таутомерных форм оснований нуклеиновых кислот формулы, изображенные на фиг. 55. Минорные таутомерные формы, возможно, играют существенную роль в возникновении спонтанных мутаций, поскольку спаривание несоответствующих оснований (см. гл. ХУП1) должно привести к ошибке при включении оснований и при последующей репликации цепи. Можно показать, что если скорость включения основания в цепь нуклеиновой кислоты меньше скорости перехода минорного таутомера в доминирующую форму, то скорость спонтанных мутаций, обусловленных данным основанием, приблизительно равна константе равновесия между минорным и доминирующим таутомерами. К сожалению, для азо- [c.308]

    Если ДНК представляет собой генетический материал, то возникает весьма важный вопрос каким образом ДНК реплицируется столь точно, что при передаче генетических признаков очень редко возникают ошибки Так как количество ДНК, приходящееся на гаплоидный набор хромосом, есть величина постоянная, делящаяся клетка должна синтезировать ДНК- Для того чтобы наследственная информация, содерлсащаяс в ДНК, была передана без ошибок, вновь синтезированная ДНК должна представлять собой точную копию исходной. На фиг. 61 изображены схемы двух предполагаемых типов репликации ДНК консервативного и полуконсервативного. [c.327]

    Задание 189. Напишите программу для моделирования самоорганизации ДНК в качестве примера самоорганизуюшихся систем. Используйте для этого следующую простую модель. Пусть имеется 100 молекул ДНК, состоящих из 12 нуклеотидов четырех видов (их обозначим буквами А, Т, С и G). Последовательность нуклеотидов в этих 100 молекулах ДНК случайная. Назовем одну из последовательностей идеальной она имеет некоторые преимущества перед остальными. Из 100 молекул ДНК в результате репликации получается еще 100 молекул. Однако при репликации встречаются ошибки (мутации), например в количестве 1%. Теперь из 200 молекул 100 погибает. При этом имеет значение преимущество, которым обладают молекулы с последовательностью нуклеотидов, похожей на идеальную . (Например, при каждом совпадении нуклеотида и его положения в цепи с идеальной последовательностью вероятность гибели уменьшается в два раза.) Процессы репликации и гибели протекают очень быстро. В конце концов все молекулы ДНК должны получить идеальную последовательность нуклеотидов, хотя вероятность ее образования в результате случайного процесса составляет 1 16777216. Что будет, если мутации будут возникать чаще или реже  [c.330]

    Нетрудно видеть, что в тонком механизме репликации и синтеза белков произвол в расположении частиц сведен к минимуму. Этот матричный процесс является низкоэнтропийным. Ошибки в размещении аминокислот в пептидных цепочках составляют по приблизительной оценке 1 на 10 . В то же время, если бы синтез белков происходил на примитивной матрице, на которой концентрация тех или иных компонентов и их относительное расположение в значительной мере определялись бы случайностями окружающей обстановки, нельзя было бы ожидать воспроизводимости синтеза того или иного белка и, в частности, того белка, от структуры которого зависят жизненно важные свойства системы. Здесь кодирование матричного синтеза обусловлено целым рядом низших кодов кодом, отвечающим соответствию т-РНК и аминокислоты кодом, соответствующим отношению между т-РНК, рибосомой и м-РНК кодом ферментов, производящих замыкание пептидных связей, и т. д. Это — кодированный перенос массы, обусловливающий возникновение структуры, обладающей исключительными свойствами их исключительность состоит в том, что они необходимы для стабилизации синтеза этой же структуры на уровне всех не только низших, но и многих высших кодов, которые возникнут, когда белки сложатся в клетки, клетки в органы, а органы в организм. [c.205]


Смотреть страницы где упоминается термин Репликация в ошибки: [c.326]    [c.107]    [c.122]    [c.306]    [c.41]    [c.56]    [c.122]    [c.486]    [c.228]    [c.29]    [c.182]    [c.219]    [c.220]    [c.908]    [c.909]    [c.442]    [c.328]   
Биохимия Том 3 (1980) -- [ c.111 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

ошибки



© 2024 chem21.info Реклама на сайте