Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Непрерывные спектры

Рис. 1.18. Непрерывный спектр времен релаксации на-полненного и сшитого линейного полимера выше температуры стеклования. Рис. 1.18. Непрерывный спектр <a href="/info/65340">времен</a> релаксации на-полненного и сшитого <a href="/info/4803">линейного полимера</a> выше температуры стеклования.

    Последовательность величин а , а , а ,. .., а может быть неограниченной, но может быть и конечной. Существуют и такие величины, спектр которых состоит только из нескольких значений. Важным примером дискретного спектра может служить энергетический спектр атомов и молекул. Он состоит из последовательности уровней энергии Е-1 < а< з<. .. <. .. Пример непрерывного спектра — [c.8]

    Тепловое излучение любого твердого тела характеризуется непрерывным спектром распределения энергии излучения по длинам волн. Сам спектр излучения твердого тела всегда является неравномерным н может быть самым различным у разных твердых тел. Описать кривые спектрального распределения энергии излучения всех твердых тел единой аналитической зависимостью не представляется возможным. [c.12]

    В рефлектометре с зеркаль юй полусферой ]18—23] образец однородно облучается излучением полости (или любого источника, имеюн1его непрерывный спектр), отраженным от зеркала. В рефлектометре с интегрирующей сферой [8—10] диффузное облучение образца достигается путем отражения излучения источника от обладающей высокой отражательной способностью диффузной поверхности сферы. Многократные отражения внутри сферы [c.458]

    О. Определение спектральных, полосных и интегральных характеристик. Введение спектральных и интегральных характеристик не представляет никаких проблем для непрерывного спектра излучения они подобны обсуждавшимся ранее характеристикам поверхностей. Например, облако частиц различного размера дает непрерывное излучение. Под словом непрерывное понимается тот факт, что величины Кд и а следовательно, и / меняются медленно и непрерывно с изменением длины волны или волнового числа. Например, спектральный массовый коэффициент поглощения сажи можно с достаточной точностью представить в виде [c.487]

    Все промежуточные случаи соотношения скоростей обеспечат непрерывный спектр концентрационных полей между рассмотренными предельными случаями. [c.190]

    Второе направление квантовохимического прогнозирования катализаторов связано с построением квантовохимических моделей поверхностей твердых тел, структуры хемосорбированных комплексов субстрат — катализатор или непосредственным изучением акта реакции на различных контактах. Молекулярные модели нашли широкое применение для решения различных задач теории твердого тела, в том числе связанных с адсорбцией и гетерогенным катализом. Их достоинствами являются относительная простота, наглядность, возможность точного учета геометрии решетки и химической природы атомов, а недостатками — трудности адекватного учета непрерывного спектра зонных состояний твердых тел. [c.61]


    Начнем с гомогенного реактора без отражателя. Так как уравнения для энергетических групп выводятся из результатов для непрерывного спектра энергий, приведем сводку соответствующих уравнений  [c.365]

    И разумеется, наиболее детальное зондирование структуры молекулы, макромолекулы или макроскопического тела произойдет в условиях резонансного поглощения энергии, когда в системе есть релаксаторы или осцилляторы с собственной частотой V = 1/тл. Повторяем, что безотносительно к эффектам квантования на этом основана вся атомная и молекулярная спектроскопия с тем единственным (и непринципиальным) отличием, что непрерывный спектр заменяется линейчатым или полосатым. Рекомендуем читателям самим в этом убедиться. [c.52]

    В твердых телах существует много дополнительных эффектов взаимодействия, следствием которых является уширение спектральных линий и их перекрытие, что дает в результате более или менее непрерывный спектр частот излучения. Идеальный источник теплового излучения — абсолютно черное тело — имеет полностью непрерывный спектр. Такой источник является идеальным в том смысле, что при данной температуре любое другое тело или поверхность излучает в любом частотном диапазоне меньше энер- [c.192]

    Черное тело, подобно любому другому телу, непрерывно испускает лучи всех длин волн X, т. е. обладает непрерывным спектром. Энергия излучения Е (в единицу времени и с единицы поверхности) зависит от длины волны и от температуры. Для абсолютно черного тела эту зависимость дает теоретическое уравнение Планка  [c.298]

    На рис. 2.1 в качестве примера показаны интегральная /(г) и дифференциальная fv(f) кривые распределения пор по эффективным радиусам г для тела с непрерывным спектром пор от Гт1п до Гтах И резко выраженным максимумом при г = 25 А. Такова модельная структура, характерная для пористых стекол. Рис. 2.2 дает представление о функции [(г) в трековых мембранах [8]. Интегральная кривая позволяет судить об изменении относительного объема пор (на единицу объема или массы пористой матрицы) дифференциальная кривая дает представление о количественном распределении пор определенного размера. Следует отметить, что структурные и дифференциальные кривые характеризуют не реальные полости матрицы мембраны, а их модельное представление в виде сфер, цилиндров и других геометрических форм. Методы получения функций распределения пор основаны на обработке изотерм сорбции в области капиллярной конденсации газа или на данных ртутной порометрни [1, 2]. [c.40]

    Если тело обладает непрерывным спектром излучения, а кривая распределения интенсивности в зависимости от длины волны подобна кривой абсолютно черного тела (1х ела = 1я,о), то излучение такого тела, в отличие от излучения абсолютно черного тела, называют серым. [c.21]

    Дискретные или непрерывные спектры гибкоцепных несшитых полимеров определяются ио уравнениям (6.4-5) и (6.4-6) или (6.4-7) и (6.4-8) соответственно из экспериментов ио релаксации и ползучести при малых напряжениях и деформациях. Для расчетов используют графические и приближенные методы [26]. [c.149]

    Поэтому величина ИХ = 1/Ое зависит от абсолютной температуры, т. е. постоянства Ое при больших временах м ожно добиться, понизив температуру или повысив Х, а при коротких временах воздействия — повысив температуру. Температурно-временную эквивалентность можно выразить следуюш,им образом чем ниже температура гибкоцепного полимера, те.м медленнее в нем развиваются процессы ползучести и релаксации, и наоборот. На рис. 6.7 этот принцип иллюстрируется графически на примере релаксации максвелловской модели. Если предположить , что А одинаково для всех X, то принцип температурно-временной эквивалентности будет выполняться для любых линейных вязкоупругих сред с дискретными или непрерывными спектрами времен релаксации. [c.149]

    Если хоть одно из одноэлектронных слагаемых, составляющих полную энергию Е, неотрицательно, то это значение Е принадлежит непрерывному спектру оператора Но, т.е. непрерывный спектр Но состоит из всех чисел Е вида [c.123]

    Каждой волновой функции 11 71 соответствует собственное значение энергии Еп- В то время как бесконечный остов имеет квази-непрерывный спектр значений энергии Еп, одномерный остов длиной I имеет спектр, в котором значения энергии Еп разделены интервалами, обратно пропорциональными величине I. [c.96]

    Другим доказательством существования реакций горячих радикалов, могут служить данные о фотолизе метилподида. Алкилиодиды имеют непрерывный спектр поглощения в области около 2500—2600 А с максимумом вблизи 2600 А. В этой области первичными процессами, сопровождающими поглощение света, являются процессы образования атомов иода и алкильного радикала. В случае метилиодида энергия связи С—I примерно равна 55 ккал. Если атом I находится в основном состоянии Рз/ , то избыток энергии ( 57 ккал) распределяется между I и СН3. Еслп атом I возбужден ( А/з), то избыток равен 35 ккал. Вследствие различия масс по крахгаей мере /в этого избытка энергии должно быть отдано радикалам СНд. Следовательно, если нет какой-нибудь быстрой реакции, включающей горячие метильные радикалы , то, по-видимому, они должны находиться в этой системе. [c.345]

    Перспективный метод изучения процессов обмена анергии был создан Норришем [440] и Портером [462]. Сущность этого Д18тода, называемого методом импульсного фотолиза, заключается в том, что исследуемый газ облучается в течение короткого времени (несколько микросекунд) интенсивным (тысячи джоулей источником света непрерывного спектра. В результате первичного или вторичных фотохимических процессов возникают радикалы или молекулы на различных колебательных уровнях. Спектроскопическая регистрация временного изменения концентраций этих частиц в определенных квантовых состояниях, обусловленная передачей энергии при столкновениях, дает возможность изучения колебательной релаксации. [c.79]


    Некоторые детали горения различаются в разных типах пламени. Обычно рассматривают два вида пламени желтое и голубое. Иногда выделяют зеленое пламя. В случаях и голубого и зеленого пламени цвет приписывают излучению некоторых радикалов, существующих в реакционной зоне. Светящееся желтое пламя объясняется свечением раскаленных угольных частиц, получающихся в результате процессов крекинга больших молекул в меньшие фрагменты. Различия между обоими видами пламени были обрисованы Хасламом и Расселом (Haslam and Russell [73]) и более полно Ромпом [74]. Желтое пламя дает непрерывный спектр, а голубое — полосатый. Один тип может быть превращен в другой изменением условий горения. Каждое топливо при неизменных условиях дает только один тип пламени. [c.475]

    Многие газы (Н1, С1 и др.) при нагревании или действии электрического разряда наряду с лтейчатым или полосатым спектром дают также непрерывный спектр. [c.10]

    Чувствительность абсорбционного метода может быть повышена (приблизительно в К) раз), например, путем замены обычно применяемого источника света с непрерывным спектром источником с линей итым спектром (метод линейчатого поглощения, см. [63, глава III, 2)]. [c.26]

    Теперь вместо непрерывного спектра опишем энергетический спектр в мно-гогрупновом приближении с помощью энергетических групп. Наибольшую пользу метод Фейнмана — Уэлтона может принести прп расчете практически интересного реактора с. замедляющим отражателем, причем в этом случае удобнее всего использовать двугрупповое приближение, которое оказывается весьма эффективным. [c.365]

    Определение ПАУ в объектах окружающей среды, основанное на применении эффекта Шпольского, включает в себя их концентрирование путем экстракции н-гексаном, а затем идентификацию и количественное определение. В частности, количественное определение бенз(а)пирена проводят по линейчатым спектрам флуоресценции экстрактов [18]. Предел обнаружения с использованием внутренних стандартов составляет 10 7-10 8 о/д а д случае метода добавок - до 3 10 %. Как правило, спектры люминесценции регистрируют при 77 К (жидкий азот). Снижение температуры позволяет улучшить отношение сигнал/шум, однако сложность требуемого оборудования (гелиевые криостаты) гфепятствует внедрению сверхнизких температур. Обычно экстракт замораживают быстрым по-фужением тонкостенной кварцевой пробирки в жидкий азот. Иногда наносят каплю раствора на охлаждаемую площадку криогенератора. Для возбуждения люминесценции гфименяют источники с непрерывным спектром (ксеноновые лампы), из которого с помощью монохроматора или интерференционного фильтра вьщеляют полосы в 1-3 нм. Длины волн, рекомендуемые для возбувдения каждого ПАУ, приведены в [c.250]

    В процессе синтеза такого катализатора, как правило, образуется непрерывный спектр размеров пор, однако большая их часть группируется вокруг какого-либо наиболее вероятного эквивалентного радиуса, который обычно принимают за основную количественную характеристику пористой структуры. Относительно именно этого радиуса пор (в условиях мультидисперсной структуры) может существовать понятие оптимального, обеспечивающего наивысшую скорость реакции. Наличие пор различного радиуса позволяет [c.78]

    Температуры, существенно превышающие уровень температур в печах и камерах сгорания, наблюдаются в дугах, в ударно нагретых газах перед движущимися с гиперзвуковон скоростью аппаратами, такими, как планетарные зонды, возвращающиеся космические корабли, и в ядерных взрывах. При столь высоких температурах в спектрах появляются линии одноатомного газа и электронные системы полос многоатомных газов, обязанные переходам между электронными уровнями энергии — связанно-связанным переходам. Фотоионизация, или свя-занно-свободные переходы, возникают в том случае, когда процессы с участием фотонов и термического возбуждения достаточны для ионизации газа. Эти переходы дают непрерывный спектр, являющийся противоположностью линиям или полосам поглощения, поскольку фотон, обладая энергией ниже требующегося для ионизации минимального значения, тем не менее может вэаи- [c.487]

    Возможна и такая ситуация, в которой поглощается фото 1 с частотой, более высокой, чем наивысщая частота, соответствукщая разности энергетических уровней атома. В этом случае электрон покинет атом и превратится в свободный электрон, а атом станет ионизированным. Обратный процесс рекомбинации катиона с электроном может привести к испусканию фотона с высокой частотой, Такой вид излучения имеет непрерывный спектр частот. Низкочастотные (инфракрасные) фотоны могут также испускаться или поглощаться колебаниями или вращениями диполь-ных молекул, которые со.здают таким образом полосы испускания или поглощения. [c.192]

    В видимой и в ближней части инфракрасной области излучательная способность изоляторов меняется в очень широких пределах, как и у металлов, и наилучший способ ее оценки состоит в визуальном наблюдении. Излучательные способности диэлектриков зависят также от температуры. Электронные уровни в них полностью заняты, и поэтому изоляторы не могут поглощать или испускать энергию при нормальных температурах. При достаточно высоких температурах электроны во.чбуждаются и могут попадать на более высокие энергетические уровни, в результате возникает электронный газ (т. е. свободные электроны), которые могут испускать и поглощать излучение с непрерывным спектром в видимом и ультрафиолетовом диапазоне. [c.195]

    Расчет энергии диссоциации молекулы может быть сделан и в тех случаях, когда слияния полос и их перехода в непрерывный спектр не наблюдается. Для этого вычисляют максимальную колебательную энергию, по которой определяют энергию диссоциации. Если молекула поглощает кванты световой энергии, то амплитуда колебаний ядер резко возрастает, увеличивается колебательно-квантовое число V и сила химической связи оказывается не способной вернуть ядра молекулы в равновесное состояние и молекула разрушается, т. е. диссоциирует. Наибольшее значение кол> которое равно энергии диссоциации, получим из уравнения (I, 170), приравнивая производную dE oJdv нулю  [c.71]

    Общая схема спектрофлуоримегра. Люминесцентные исследования основаны на измерении спектров люминесценции. На рис. 29 приведена принципиальная схема установки для измерения люминесценции. В качестве источника возбуждения целесообразно использовать источник с непрерывным спектром (например, ксеноновая лампа ДКСШ-200). Однако в сочетании со светофильтрами могут применяться также источники с линейчатыми спектрами (например, ртутные лампы ДРШ). [c.63]

    Помимо ртутных ламп в фотохимических исследованиях широко используются газосветные лампы, наполненные тяжелыми инертными газами, например ксеноном, при давлении 1,5-10 мм рт. ст. и выше. После включения лампа сразу дает 80% светового потока. Полный световой поток достигается после того, как лампа приобретет установившийся тепловой режим. Давление газа при этом возрастает примерно в два раза. Спектр ксеноновых ламп ДКСШ существенно отличается от спектра ртутных ламп. Видимая и ультрафиолетовая части спектра представляют собой интенсивный непрерывный спектр, который простирается вплоть до 184 нм, где он обрезается поглощением в атмосфере. Распределение энергии в спектрах ламп с разрядом в инертных газах данного типа практически не зависит от давления и силы тока. [c.140]

    Излучение светящегося пламени складывается из излучения трехатомных газов СОт и Н9О и сажистых частиц. Трехатомные газы образуют полосатый спектр излучения, в котором важную роль играет излучение водяного пара Н2О. В отличие от газов сажистые частицы дают непрерывный спектр излучения, который, как уже указыва гюсь выше, не является серым [3]. [c.17]

    Включите источник непрерывного спектра (глобар), повернув На блоке питания переключатель / в положение 36 , соответствующее минимальному нагреву глобара. При этом должен загореться красный сигнал на пульте прибора. [c.144]

    Х-Релаксация —сложный процесс и обычно расщепляется, на несколько отдельных релаксационных процессов с одинаковой энергией активации, но различными значениями коэффициента В. Приведенные на рис. I. 18 и I. 19 схемы показывают, что в действительности в исследуемых полимерах наблюдается три отдельных Х-процесса (хотя для других полимеров их может быть и меньше, и больше). Эта дискретность может быть связана как с существованием разных морфологических типов микроблоков или разной степени их связанности (что отражается на их подвижности как целого), так и с различными временами их жизни как псевдоди-скретных частиц. Необходимо отметить, что максимумы на кривой непрерывного спектра времен релаксации (см. рис. I. 18) практически совпадают с дискретными значениями, приведенными в табл. 1.1. [c.64]


Смотреть страницы где упоминается термин Непрерывные спектры: [c.156]    [c.324]    [c.343]    [c.61]    [c.165]    [c.376]    [c.450]    [c.9]    [c.9]    [c.507]    [c.40]    [c.40]    [c.58]    [c.59]    [c.149]    [c.149]    [c.120]   
Смотреть главы в:

Спектры и строение простых свободных радикалов -> Непрерывные спектры

Спектры и строение простых свободных радикалов -> Непрерывные спектры


Спектры и строение простых свободных радикалов (1974) -- [ c.176 , c.190 ]

Спектры и строение простых свободных радикалов (1974) -- [ c.176 , c.190 ]




ПОИСК







© 2025 chem21.info Реклама на сайте