Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт ионов транспортирующие белки

Рис. 7.5. Модель активного транспорта ионов через мембрану. Согласно модели, Ка+,К -насос является переносчиком с более высоким сродством к ионам натрия внутри клеточной мембраны, а к ионам калия — снаружи. Изменение сродства происходит вследствие конформационных изменений при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие центры белков перемещаются с внутренней стороны мембраны на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР Рис. 7.5. <a href="/info/1893449">Модель активного транспорта ионов</a> <a href="/info/152902">через мембрану</a>. <a href="/info/771004">Согласно модели</a>, Ка+,К -насос является переносчиком с <a href="/info/1456069">более высоким</a> сродством к <a href="/info/263999">ионам натрия</a> внутри <a href="/info/4417">клеточной мембраны</a>, а к <a href="/info/14688">ионам калия</a> — снаружи. <a href="/info/960322">Изменение сродства</a> происходит вследствие <a href="/info/2999">конформационных изменений</a> при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие <a href="/info/166596">центры белков</a> перемещаются с внутренней <a href="/info/1388494">стороны мембраны</a> на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР

    Тот факт, что все бактерии, включая и строгих анаэробов, поддерживают на своей плазматической мембране протонодвижущую силу, свидетельствует о важной роли электрохимического протонного градиента в транспорте веществ через мембрану против градиентов их концентрации. Напримф, ионы Ка вьшосятся из бактериальной клетки по механизму Ка -Н -антипорта, заменяющему здесь Ка -К -АТРазу эукариотических клеток. Поглощение питательных веществ осуществляется у бактерий по механизму Н -симпорта необходимые метаболиты пост5 пают в клетку вместе с одним или несколькими протонами при участии специальных белков-переносчиков. Таким способом в клетку транспортируются многие сахара и больщинство аминокислот (рис. 9-36). Некоторые бактериальные транспортные белки используют для активного пфеноса веществ другие источники энергии, например гидролиз АТР или направленный внутрь клетки симпорт с Ка, но подобные примеры относительно редки. В отличие от этого в животных клетках транспорт через плазматическую мембрану внутрь клетки в основном осуществляется за счет энергии градиента ионов Ка , создаваемого Ка -К -АТРазой (разд. 6.4.10). [c.34]

    В сочетании с активным транспортом ионов через биомембраны проникают различные сахара, нуклеотиды и аминокислоты. Макромолекулы, такие как, например, белки, через мембрану не проходят. Они, а также более крупные частицы вещества транспортируются внутрь клетки посредством эндоцитоза. При эндоцитозе определенный участок мембраны захватывает, обволакивает внеклеточный материал, заключает его в мембранную вакуоль. Эта вакуоль — эндосома сливается в цитоплазме с [c.447]

    Глобулины, представленные а -фракцией, содержатся в крови в комплексе с билирубином и с липопротеинами высокой плотности. Глобулины, мигрирующие при электрофорезе в виде а,-фракции, содержат глобулин и неизвестный гликопротеин. 3-Глобулины включают ряд важных в функциональном отношении белков, в частности трансферрин — белок, ответственный за транспорт железа. С этой же фракцией связан церулоплазмин — белок, транспортирующий ионы меди. Отсутствие этого белка приводит к развитию гепатоцеребральной дистрофии, при которой наблюдается отравление организма ионами свободной меди. В основе болезни лежит врожденный дефицит синтеза церулоплазмина. Наконец, во фракции 13-глобулинов содержится протромбин, являющийся предшественником тромбина-белка, ответственного за превращение фибриногена крови в фибрин при свертывании крови. [c.74]

    Иногда транспорт какого-либо соединения с участием переносчика сопровождается параллельной транслокацией другого соединения в том же направлении — симпорт или в противоположном — антипорт. Примером симпорта может служить транспорт молекул глюкозы, при котором ионы На" " связываются с белком мембраны и увеличивают его сродство к глюкозе. Поскольку внеклеточная жидкость содержит больше ионов Ма , чем внутриклеточная, то вне клетки присоединение ионов Ка , а следовательно, и глюкозы происходит чаще и молекулы глюкозы транспортируются внутрь клетки. Таким образом, наряду с пассивным транспортом ионов Ма происходит симпорт глюкозы. Строго говоря, энергия, необходимая для работы данного механизма, запасается в процессе активного транспорта, т. е. при работе (Ма , К )-насоса, механизм которого рассмотрен далее. [c.445]


    Системы белков, которые осуществляют активный транспорт ионов, расходуя энергию АТФ, называют ионтранспортируюи и-ми АТФазами. В лимфоцитах описаны Na-, К-транспортирующая АТФаза и Са-транспортирующая АТФаза. [c.52]

    Всасывание моносахаридов из кишечника происходит путем облегченной диффузии с помощью специальных белков-переносчиков (транспортеров). Кроме того, глюкоза и галактоза переносятся в энтероцит путем активного транспорта, зависимого от градиента концентрации ионов натрия. Белки-транспортеры, зависящие от градиента Ка", обеспечивают всасывание глюкозы из просвета кишечника в энтероцит против ее градиента концентрации. Энергия, необходимая для этого транспорта, обеспечивается Ка", К -АТРазой, которая работает, как насос, откачивая из клетки Ка" в обмен иа К". В отличие от глюкозы фруктоза транспортируется системой, не зависящей от градиента натрия. [c.135]

    Клеточные мембраны, так же как и искусственные липидные бислои, способны пропускать воду и неполярные молекулы за счет простой физической диффузии. Олнако клеточные мембраны пропинаемы и для различных полярных молекул, таких, как сахара, аминокислоты, нуклеотиды и многие другие метаболиты, которые проходят через синтетические бислои чрезвычайно медленно. За перенос подобных растворенных веществ через клеточные мембраны ответственны специфические белки, называемые мембранными транспортными белками. Они обнаруживаются во всех типах биологических мембран и могут сильно отличаться друг от друга. Каждый конкретный белок предназначен для определенного класса молекул (например, неорганических ионов, Сахаров или аминокислот), а нередко лищь какой-то разновидности молекул из этих классов. Специфичность транспортных белков была впервые показана, когда обнаружилось, что мутации в олном-единственном гене приводят к исчезновению у бактерий способности гранспортировать определенные сахара через плазматическую мембрану. Аналогичные мутации теперь известны и у людей, страдающих различными наследственными болезнями, при которых нарушается транспорт тех или иных веществ в почках или кишечнике. Например, у индивидуумов с наследственной болезнью цистинурией отсутствует способность транспортировать определенные аминокислоты (включая цистин - связанный дисульфидной связью димер цистеина) из мочи или кишечника в кровь. В результате происходит накопление цистина в моче, что приводит к образованию цистиновых камней в почках. [c.381]

    По синтез АТР - это не единственный процесс, идущий за счет энергии электрохимического градиента. В матриксе, где находятся ферменты, участвующие в цикле лимонной кислоты и других метаболических реакциях, необходимо поддерживать высокие концентрации различных субстратов в частности, для АТР-синтетазы требуются ADP и фосфат. Поэтому через внутреннюю мембрану должны транспортироваться разнообразные несущие заряд субстраты. Это достигается с помощью различных белков-переносчиков, встроенных в мембрану (см. разд. 6.4.4). многие из которых активно перекачивают определенные молекулы против их электрохимических градиентов, т. е. осуществляют процесс, требующий затраты энергии. Для большей части метаболитов источником этой энергии служит сопряжение с перемещением каких-то других молекул вниз по их электрохимическому градиенту (см. разд. 6.4.9). Папример, в транспорте ADP участвует система антипорта ADP-ATP при переходе каждой молекулы ADP в матрикс из него выходит по своему электрохимическому градиенту одна молекула АТР. В то же время система симпорта сопрягает переход фосфата внутрь митохондрии с направленным туда же потоком П протоны входят в матрикс по своему градиенту и при этом ташат за собой фосфат. Подобным образом переносится в матрикс и пируват (рис. 7-21). Энергия электрохимического протонного градиента используется также для переноса в матрикс ионов Са , которые, по-видимому, играют важную роль в регуляции активности некоторых митохондриальных ферментов большое значение может иметь и поглощение митохондриями этих ионов для удаления их из цитозоля, когда концентрация Са в последнем становится опасно высокой (см. разд. 12.3.7). [c.443]

    При дыхании митохондрий происходит электрогенный выброс в цитоплазму ионов водорода и генерация градиента pH и электрического потенциала на внутренней митохондриальной мембране (знак — внутри). Образующийся так называемый электрохимический потенциал ионов водорода (А дН в соответствии с определением П. Митчела) является движущей силой транспорта катионов и слабых кислот внутрь органелл. На каждые два перенесенных по дыхательной цепи электрона внутрь митохондрии транспортируется два иона кальция. Данные о кинетических параметрах системы транспорта Са + противоречивы. Однако можно сделать вывод, что величины кажущихся Кй и Утах при транспорте составляют соответственно более 10 мкМ и 500 нмоль/мг митохондриального белка в 1 мин. [c.45]


    Транспорт и накопление. Транспорт многих небольших молекул и ионов осуществляется специфическими белками. Например, содержащийся в эритроцитах гемоглобин переносит кислород к тканям, тогда как близкий к нему белок миоглобин запасает кислород в мышцах. В плазме крови железо транспортируется в виде комплекса с трансферрином, а в печени оно накап- [c.18]


Смотреть страницы где упоминается термин Транспорт ионов транспортирующие белки: [c.292]    [c.370]    [c.143]    [c.443]    [c.180]   
Введение в биомембранологию (1990) -- [ c.176 ]




ПОИСК







© 2025 chem21.info Реклама на сайте