Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движущая сила транспорта через мембрану

    ЦПМ является основным барьером, обеспечивающим избирательное поступление в клетку и выход из нее разнообразных веществ и ионов Осуществляется это с помощью разных механизмов мембранного транспорта. Молекулы воды, некоторых газов (таких, как О2, Н2, N2) и углеводородов, концентрации которых во внешней среде выше, чем в клетке, проходят через ЦПМ внутрь клетки посредством пассивной диффузии. Движущей силой этого процесса служит градиент концентрации вещества по обе стороны мембраны. Основным соединением, поступающим в клетку и покидающим ее таким путем, является вода. Движение воды через мембрану, подчиняющееся законам пассивной диффузии, привело к выводу о существовании в мембране пор. Эти поры пока что не удалось увидеть в электронный микроскоп, но некоторые данные о них были получены косвенными методами. Расчетным путем установлено, что поры должны быть очень мелкими и занимать небольшую часть поверхности ЦПМ. Высказывается предположение, что они не являются стабильными структурными образованиями, а возникают в результате временных перестроек молекулярной организации мембраны. [c.43]


    Вторым типом транспорта с переносчиком является совместный транспорт. В этом случае растворенное вещество А переносится через мембрану вместе с растворенным веществом Б. Оба вещества локализованы на одной стороне мембраны и движущей силой является градиент концентрации одного из растворенных веществ, например, Б. Это значит, что растворенное вещество А может быть перенесено даже против своего градиента концентрации. [c.82]

    В пористых мембранах наиболее важны такие структурные параметры, как размер пор, распределение пор по размерам, пористость и геометрия пор. Они должны учитываться в любой разрабатываемой модели. Селективность таких мембран основывается главным образом на различиях между размерами частицы и поры. Описание транспортных моделей будет включать обсуждение всех этих параметров. С другой стороны, в плотных, непористых мембранах молекула может проникать, только если она растворяется в мембране. Степень такой растворимости определяется сродством между полимером (мембраной) и низкомолекулярным компонентом. Далее, вследствие существования движущей силы компонент переносится от одной стороны мембраны к другой путем диффузии. Селективность в этих мембранах определяется в основном различиями растворимостей и/или коэффициентов диффузии. Следовательно, существенными для скорости транспорта параметрами являются такие, которые дают информацию о термодинамическом взаимодействии или сродстве между мембраной (полимером) и диффундирующим веществом. Взаимодействие между полимерами и газами обычно невелико, тогда как между полимерами и жидкостями часто существуют сильные взаимодействия. Когда сродство в системе увеличивается, полимерная сетка будет обнаруживать склонность к набуханию, и это набухание оказывает значительное влияние на транспорт. Такие эффекты должны рассматриваться при любом описании транспорта через плотные мембраны. [c.226]

    Уравнения потока, полученные из неравновесной термодинамики, дают реальное описание транспорта через мембраны. В этом описании мембрана рассматривается как черный ящик. Этот подход не позволяет получить (или не требует) информации о структуре мембраны, и, следовательно, отсутствует физико-химическая картина массопереноса молекул или частиц через мембрану. Из-за ограничения этого подхода в отношении природы мембраны и механизма разделения здесь будет дано лишь краткое введение в неравновесную термодинамику мембранного транспорта. Подробную информацию можно найти в ряде отличных руководств [1-3]. Одна из сильных сторон этого подхода заключается в том, что очень четко можно продемонстрировать существование сопряжения движущих сил и/или потоков. Поэтому будут даны некоторые примеры, иллюстрирующие эти явления сопряжения. [c.217]


    Процессы транспорта через мембраны не могут рассматриваться как термодинамически равновесные, и поэтому для описания мембранного транспорта может быть использована только термодинамика необратимых процессов. В неравновесных процессах (и, следовательно, в мембранном транспорте) свободная энергия непрерывно рассеивается (если поддерживается постоянная движущая сила), а энтропия производится. Эта скорость увеличения энтропии вследствие необратимых процессов описывается с помощью диссипативной функции ф, выраженной в виде суммы всех необратимых процессов, каждый из которых может быть описан как произведение сопряженных потоков (7) и сил (X). [c.217]

    Мембрана способна пропускать один компонент быстрее другого из-за различий физических и (или) химических свойств мембраны и компонентов разделяемой смеси. Транспорт через мембрану является результатом воздействия движущих сил на индивидуальный компонент в исходной смеси. В общем случае движущей силой переноса веществ через мем- [c.574]

    Движение ионов через мембраны происходит частично благодаря электрохимическим градиентам и частично с помощью локализованных в мембранах насосов. Когда транспорт осуществляется по электрохимическому градиенту, ионы сначала присоединяются к особым участкам на мембране (пермеазам). Затем они проникают в клетку в соответствии с уравнением Нернста, если общий эффект градиента их концентрации по обе стороны мембраны и электрический трансмембранный потенциал обеспечивают движущую силу, направленную внутрь. Транс-, мембранные потенциалы образуются двумя путями 1) в результате диффузии как анионов, так и катионов, которые, однако, движутся через мембрану с разными скоростями 2) благодаря электрогенному транспорту с прямым использованием энергии для прокачивания протонов, анионов или катионов через мембрану против их электрохимических градиентов. Оба этих процесса всегда действуют таким образом, что внутри клетки создается более отрицательный заряд по сравнению с зарядом юне ее. [c.238]

    В конце этой главы мы попытаемся охватить все мембранные процессы в рамках единой модели с тем, чтобы выявить общность разных процессов в терминах движущих сил, потоков и основных принципов. Исходной точкой для этого могут служить задаваемые в общем виде уравнение закона Фика [22] или Стефана — Максвелла [23]. Чтобы описать транспорт через пористую или непористую мембраны, следует учесть два члена, а именно вклады диффузионного потока (г>) и конвективного потока (гх) (рис. У-22). Поток компонента г через мембрану может быть представлен как произведение скорости и кон- [c.259]

    В каждом процессе мембранного разделения мембраны служат для частичного разделения смесей. Мембрана способна пропускать один компонент быстрее, чем другой, из-за различий физических и (или) химических свойств мембраны и компонентов разделяемой смеси. Транспорт через мембрану является результатом воздействия движущих сил на индивидуальный компонент в сырьевой смеси (фаза 1 на рис. 1-4). Во многих случаях скорость массопереноса через мембрану пропорциональна движущей силе, то есть связь потоков и сил может быть описана линейным феноменологическим уравнением. Пропорциональность между потоком J) и движущей силой определяется уравнением [c.31]

    Наиболее вг1жное применение — это гемодиализ, при котором мембраны используются как искусственная почка для людей, страдающих почечной недостаточностью. Диализные мембраны могут полностью заменить почку и способны удалять токсические низкомолекулярные компоненты мочевину, креатинин, фосфаты и мочевую кислоту. Это достигается прокачиванием крови через диализатор, который, как правило, представляет собой половолоконный модуль, содержащих какую-либо из упомянутых мембран. Одно из главных требований, предъявляемых к мембранным материалам, — это их кровесовмести-мость. Часто в качестве антикоагулянта в кровь до ее поступления в диализную ячейку добавляют гепарин. Кроме токсичных компонентов через мембрану будут диффундировать также нетоксичные важные для организма растворенные низкомолекулярные вещества. Например, таким образом отделяются электролиты (ионы натрия и калия), если в качестве второй фазы взять чистую воду, а так как электролитный баланс очень важен для организма, при диализе в качестве фазы пермеата используют физиологические солевые растворы такие условия нивелируют движущую силу транспорта этих ионов. [c.359]

    МЕМБРАНЫ ЖЙДКИЕ, полупроницаемые жидкие пленки или слои, обеспечивающие селективный перенос в-в в процессе массообмена между жидкими и (или) газообразными фазами. Различают свободные, импрегнированные и эмульсионные М. ж. Свободные М. ж,-устойчивые в гравитац. поле слои жидкости, отличающиеся по плотности от разделяемых ими фаз, напр, слой орг. жидкости, расположенный под водными р-рами в обоих коленах и-образной трубки. Импрегнированные М. ж. представляют собой пропитанные жидкостью пористые пленки (полипропиленовые, полисуль-фоновые, политетрафторэтиленовые и др.) или волокна (полипропиленовые, полисульфоновые). Эмульсионные М. ж,-стабилизированные ПАВ жидкие слои, отделяющие капельную фазу от сплошной в эмульсиях типа вода-масло-вода нли масло-вода-масло. Толщина свободных М. ж., как правило, св. 1 мм, импрегнированных 10-500 мкм, эмульсионных 0,1-1,0 мкм. М. ж. могут быть одноко шонентными и многокомпонентными. Первые являются для проникающего через М. ж. в-ва лишь более или менее селективным р-рителем, осуществляют пассивный перенос. Многокомпонентные М. ж. обычно содержат хим. соединения-переносчики, растворенные в мембранной жидкости и способные избирательно связывать и переносить через мембрану диффундирующее в-во (индуцированный либо активный транспорт). Перенос в-в через М. ж. может протекать в режиме диализа и электродиализа (движущая сила процесса-градиент хим илн электрохим. потенциала по толщине мембраны, см. Мембранные процессы разделения ). [c.31]


    Как уже отмечалось, рассматриваемые в настоящей книге -мембраны часто находятся в неравновесном состоянии через такие мембраны осуществляется транспорт компонентов и в случае заряженных частиц происходит одновременно перенос заряда. Скорость мембранного транспорта для любого компонента данной системы определяется потоком масс /i (количество вещества, проходящего через единицу площади за единицу времени). Величина потока вещества пропорциональна подвижности частиц ( /г)> их концентрации в данной точке фазы (сг) и движущей силе процесса переноса. Подвижность частиц в единицах СИ имеет размерность кг -с-моль. В случае переноса заряда [c.32]

    Митохондрии, суспендированные в растворе непроникающих веществ, ведут себя как прекрасные осмометры. Внутренняя мембрана, в сущности, непроницаема для молекул более крупного размера п для всех заряженных ионов. Вода, маленькие нейтральные молекулы (Ог и NH3, но не Н+, ОН" или NHI) и несколько проникающих анионов (С1- и ацетат , если нм сопутствуют катионы) могут самопроизвольно входить в матрикс или выходить из него. В принципе движение веществ внутрь матриксного пространства может осуществляться быстро, но происходит оно в основном как активный транспорт или облегченный обмен. Оба процесса совершаются с участием специфических высокоспециализированных белков. Такие белки называют носителями или транслоказами (разд. 11.3.2), большинство из них функционирует по типу антипорта, т. е. движение вещества через мембрану становится возможным только в обмен на какое-либо довольно специфическое вещество, имеющее тот же заряд, но двигающееся в обратном направлении, например ADP обменивается на АТР. Для транспорта с помощью транслоказы (носителя) не требуется никакой дополнительной энергии извне. По крайней мере одна из пары транспортируемых молекул, движение которой осуществляется по типу антипорта (обмена), должна двигаться вниз по значительному концентрационному градиенту. Следует отметить, что таким образом выход какого-либо основного компонента клетки по концентрационному градиенту, будь то через митохондриальную или плазматическую мембрану, может управлять движением идущего навстречу вещества против его градиента, т. е. совершать работу до тех пор, пока обе движущие силы не уравновесятся. На рис. 12.8 показано расположение нескольких участвующих в одной последовательности переносчиков. [c.422]

    Неравновесное распределениё зарядов, т.е. электрохимический градиент, служит движущей силой для процесса регенерации АТР (и других процессов, требующих затраты энергии). Мембрана содержит специальный фермент АТР-синтазу, синтезирующий АТР из ADP и Р . Этот фермент выступает из мембраны с ее внутренней стороны. В процессе синтеза АТР протоны переходят обратно с наружной стороны мембраны на внутреннюю. Синтез АТР за счет энергии транспорта электронов через мембрану называют окислительным фосфорилированием или фосфорилированием в дыхательной цепи. [c.236]

    Движущей силой мембранных процессов является разность электрических потенциалов, транспорт основан на способности ионов и заряженных частиц проводить электрический ток. При наложении разности потенциалов к раствору соли положительные ионы (катионы) движутся к отрицательному электроду (катоду), а отрицательные (анионы) — к положительно заряженному электроду (аноду). Движущая сила не оказывает влияния на незаряженные молекулы, что позволяет отделять их от компонентов, несущих электрический заряд. С помощью заряженных мембран возможно регулировать транспорт ионов. Такие мембраны проводят электрический ток. Различают два вида мембран катионообменные мембраны, позволяющие переносить положительно заряженные ионы, и анионообменные мембраны, обусловливающие перенос анионов. Транспорт ионов через заряженную мембрану основан на эффекте Доннана (см. гл. IV). Для осуществления электромембранных процессов используются разнообразные комбинации электрически заряженных мембран и разности потенциалов. Одним из основных электромембранных процессов является элетродигилиз, который используется для очистки воды от ионов. Имеется множество производных процессов, основанных на использовании заряженных мембран и разности потенциалов (в качестве движущей силы). Некоторые из них, такие, как мембранный электролиз и применение биполярных мембран, будут описаны ниже. [c.370]


Смотреть страницы где упоминается термин Движущая сила транспорта через мембрану: [c.43]    [c.318]    [c.16]    [c.14]    [c.313]   
Введение в мембранную технологию (1999) -- [ c.212 , c.213 , c.214 , c.215 , c.216 , c.308 , c.309 , c.310 , c.311 , c.312 , c.313 , c.314 , c.315 , c.316 , c.317 , c.318 , c.319 , c.320 , c.321 , c.322 , c.323 , c.324 , c.325 , c.326 , c.327 , c.328 , c.329 , c.330 , c.331 , c.332 , c.333 , c.334 , c.335 , c.336 , c.337 , c.338 , c.339 , c.340 , c.341 , c.342 , c.343 , c.344 , c.345 , c.346 , c.347 , c.348 , c.349 , c.350 , c.351 , c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Движущая сила



© 2025 chem21.info Реклама на сайте