Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клетки животных как системы экспрессии генов

    Высокий темп исследований генной инженерии на клетках животных вселяет надежду, что в ближайшее время будут разработаны простые системы, которые позволят осуществить анализ механизмов экспрессии генов эукариот и дадут возможность создать животных, обладающих заданными свойствами. [c.441]

    У эукариотических клеток развились куда более сложные механизмы контроля экспрессии генов, затрагивающие целые системы взаимодействующих генных продуктов. Как внешние, так и внутренние сигналы активируют или подавляют группы генов. При дифференцировке клеток должны координированно измениться и состав мембран, и цитоскелет, и секретируемые продукты, и даже метаболизм. Сравните, например, приспособленную к сокращению клетку скелетной мышцы и остеобласт - секретирующий твердый матрикс кости - > одного и того же животного (схема 1-2). Столь радикальные различия в типе клеток обусловлены стабильными изменениями в экспрессии генов. Механизмы, контролирующие такие изменения, развились у эукариот до беспрецедентной для прокариот степени. [c.37]


    В области биотехнологии молекулярная генетика создает фундаментальные основы для создания продуцентов различного рода веществ по двум направлениям. Во-первых, в ходе идентификации новых генов человека и других организмов выявляются все новые биорегуляторы и их рецепторы, которые можно использовать в качестве лекарственных препаратов для ветеринарии и медицины. Во-вторых, совершенствуются системы экспрессии различного рода генов в разнообразных клетках и организмах, что в свою очередь создает две перспективы создание клеток (бактериальных и эукариотических) и организмов (растений и животных), продуцирующих различного рода вещества, которые далее могут использоваться как лекарства, пищевые добавки, ферменты в заводских процессах или компоненты диагностикумов или вакцин, а также для создания организмов с улучшенными свойствами, например, трансгенных растений, устойчивых к засухам или имеющих повышенную переносимость к засоленным почвам, или животных, устойчивых к инфекциям. Наиболее впечатляющим достижением в области создания новых продуцентов можно назвать создание живых ферментеров - животных, секретирующих лекарственные препараты в молоко. Развитие технологий создания трансгенных животных делает процедуру создания такого ферментера достаточно рутинной. Эти технологии базируются на достижениях генетики соматических клеток и в последнее время намечается тенденция использования для этих целей систем клонирования животных. Можно сказать, что развитие молекулярной генетики перевело биотехнологию на уровень целых организмов, заложило предпосылки экологически чистых технологических процессов и интенсивных сельскохозяйственных технологий. Это особенно важно ввиду намечающихся демографических и экологических кризисов перенаселенной планеты. [c.8]

    Недостаток данной векторной системы состоит в том, что клетки с гибридными ДНК подвергаются морфологической трансформации. Больщой интерес представляет изучение экспрессии чужеродных генов в нормальных клетках животных. Для этой цели можно либо ис- [c.403]

    В клетках взрослого животного глобиновый тетрамер состоит из двух идентичных а-цепей и двух идентичных р-цепей. Гены а- и р-глобинов кодируются независимыми генетическими локусами, экспрессия которых должна быть скоординирована таким образом, чтобы обеспечить продуцирование одинаковых количеств каждого из двух полипептидов. Таким образом, эта система представляет собой пример того, когда для поддержания определенного фенотипа клетки необходимо осуществление одновременной регуляции работы генов, расположенных в разных участках генома. [c.268]


    Динамика экспрессии индивидуальных генов в развивающемся мозге очень различна и по мере развития отделов мозга приобретает черты, отражающие их паттерн экспрессии в мозге взрослых животных. Экспрессия этих генов в клетках герминативных зон может означать, что судьба индивидуальных клеточных линий в нервной системе предопределена уже до начала их миграции из герминативной зоны. [c.34]

    Исследование биологической активности вилона, проведенное на мыщах линии СВА, обнаружило существенное увеличение максимальной продолжительности жизни этих животных в результате введения им препарата. При этом применение вилона оказывало угнетающее действие на развитие злокачественных опухолей и новообразований у самок мышей СВА (Хавинсон, Анисимов, 2000 Анисимов В. Н. и др., 2002а). Изучение влияния вилона на экспрессию генов показало, что гены, уровень экспрессии которых изменялся под действием пептида, относятся к самым разным клеточным системам. Однако наиболее широко среди них представлены гены клеточного деления и защитных систем клетки и организма. В частности, значимым можно считать изменение экспрессии генов, имеющих отношение к регуляции клеточного цикла и мембранного транспорта, а также генов, имеющих отношение к онкогенезу и обмену кальция (Анисимов С. В. и др., 2002). [c.35]

    Все основные принципы, используемые при конструировании бактериальных векторов, применимы и для получения векторов эукариотических клеток. Как и в случае бактерий, эукариотический вектор представляет собой небольшую молекулу ДНК, способную автономно реплицироваться в клетках животных или растений. Помимо последовательностей нуклеотидов, обеспечи-ваюпдих репликацию, эукариотические векторы могут содержать гены, используемые в качестве селектируемых маркеров, а также один или несколько уникальных сайтов рестрикции, по которым производится встраивание клонируемых последовательностей нуклеотидов ДНК. Поскольку непосредственное клонирование рекомбинантных ДНК в клетках животных или растений было бы дорогостоящей и малоэффективной процедурой, эукариотические векторы используют, как правило, для получения экспрессии уже клонированных последовательностей нуклеотидов в клетках высших эукариот, а сам процесс клонирования проводят в бактериях. Следовательно, эукариотические векторы, помимо всего прочего, должны быть челночными векторами. Для экспрессии в клетках рекомбинантные ДНК помещают под контроль регуляторных элементов, узнаваемых и используемых ферментативными системами эукариотических клеток. [c.133]

    Выделение любого нового рекомбинантного гена, как правило, заканчивается попытками получения его полноценной экспрессии в искусственных генетических системах, т.е. наработки в препаративном количестве полноценного в функциональном отношении рекомбинантного белка. В настоящее время имеется множество систем экспрессии рекомбинантных генов, среди которых наибольшее применение в биотехнологии находят модифицированные различным образом микроорганизмы. Поскольку такие системы не позволяют решить многих проблем, связанных с экспрессией эукариотических рекомбинантных генов, в том числе, осуществления посттрансляционных модификаций рекомбинантных белков, в ряде случаев для решения этих проблем используют культивируемые клетки животных и растений. Для изучения механизмов экспрессии генов в лабораторных условиях большую пользу приносят так называемые пермеабилизованные культивируемые клетки с полупроницаемыми мембранами, что можно сделать в определенных условиях. Кроме того, незаменимыми помощниками молекулярных биологов и генетиков остаются бесклеточные белоксинтези-рующие системы, один из вариантов которых, а именно проточные системы, находит применение и в промышленном производстве пептидов. Принципы, лежащие в основе использования таких систем, будут кратко рассмотрены ниже. [c.168]

    На основе Sa haromy es erevisiae созданы высокоэффективные системы экспрессии рекомбинантных генов и крупнотоннажного синтеза рекомбинантных белков человека, животных и растений, в том числе и рекомбинантных антител (см. раздел П.3.4) [257]. Кроме того, экспрессия рекомбинантных белков в этих клетках активно используется для улучшения свойств белков методами направленной эволюции с использованием клеточного дисплея (раздел П.2.3.2), изучения белок-белковых взаимодействий в дрожжевых л-гибридных системах (раздел П.2.3.4) и для множества других не менее важных целей. [c.174]

    Теперь, благодаря разработке методов получения трансгенных животных стало возможным изучать толерантность к своему прямым путем. Эти методы позволяют вводить мышам с известной генетической основой специфический ген и анализировать влияние данного гена на развитие иммунной системы. Кроме того, если вводимый ген соединить с тканеспецифическим промотором, экспрессию гена можно ограничить специфичными для данного промотора клетками. Иммунная система реагирует на белковый продукт трансгена , по существу, как на истинный собственный антиген (аутоантиген), и все происходящие при этом процессы можно изучать in vivo, исключив травмирующие вмешательства и воспалительные реакции, сопутствующие пересадке чужеродных клеток или тканей. Кроме того, жи- [c.260]


    Существование опухолевых антигенов впервые было обнаружено при постановке трансплантационных тестов. Когда опухоль пересаживали животному, предварительно иммунизированному инактивированными клетками той же опухоли, трансплантат отторгался. Резистентность к пересаженной опухоли, опосредованная, как впоследствии было установлено, клетками иммунной системы, направлена на опухолеассоциированные трансплантационные антигены двух типов. Антигены первого типа (Т-, от англ. tumor, антигены) — общие для многих опухолей, даже различного тканевого происхождения. Антигены второго типа специфичны для каждой отдельной опухоли — это опухолеспецифические трансплантационные антигены. Возможна одновременная экспрессия специфических и Т-анти генов. [c.378]

    Однако не всегда при успешной экспрессии чужеродного гена можно получить функционально активный продукт. Дело в том, что многие эукариотические белки активируются только после их модификации (например, после протеолиза, гликозилирования, фосфорилирования и т. п.), происходящей в результате действия специфических клеточных ферментов. Но чужеродные белки могут неправильно модифицироваться или не модифицироваться вообще. Это ограничивает выбор реципиентных клеток, когда нужно получить активные модифицированные белки. В таких случаях для клонирования генов приходится использовать клетки орга низмов, родственных тем, откуда были взяты гены. С этой целью разрабатываются системы клонирования и экспрессии генов в различных семействах бактерий и низших грибов, в растительных и животных клетках ( Транскрипция и трансляция. Методы , 1987 Maximizing gene expression , 1986). [c.314]

    Кяеткы-хозяева. Для трансформации с помощью рекомбинантных ДНК и для изучения экспрессии генов чаще всего используют животные клетки, выращенные в культуре клеток (или, менее строго, культуре тканей). Подходящую среду для эффективной экспрессии многих клонированных генов, в том числе и генов млекопитающих, обеспечивают также ооциты Xenopus (гл. 7). В последние годы были разработаны методы введения клонированных последовательностей ДНК в эмбрионы животных на ранних стадиях развития и даже в зиготы млекопитающих. ДНК способна встраиваться в геном таких эмбриональных клеток, вызывая их стабильную трансформацию. Получено жизнеспособное потомство, причем в тех случаях, когда в геноме первичных половых клеток введенная ДНК стабильно сохраняется, новые генотип и фенотип наследуются в последующих поколениях по законам Менделя. В случае плацентарных млекопитающих развитие нового потомства зависит от эффективности имплантации трансформированных ранних эмбрионов в матку матери. Системы для такой модификации первичных половых клеток от [c.257]

    Трансгенные животные как продуценты ценных биологически активных белков и гормонов имеют ряд преимуществ перед микроорганизмами и клеточными системами. Важно, что новые белки, получаемые в линиях клеток трансгенных животных, могут бьггь модифицированы, их активность сравнима с активностью протеинов. Для молочного производства представляет большой рштерес получение целенаправленной трансгенной экспрессии в эпителиальные клетки молочной железы с целью выхода белков с молоком. Один из основных этапов получения трансгенных животных, продуцирующих гетерогенный белок с молоком, — идентификация промотора, направляющего экспрессию структурных генов в секреторный эпителий молочной железы. [c.131]


Смотреть страницы где упоминается термин Клетки животных как системы экспрессии генов: [c.77]    [c.97]    [c.124]    [c.135]    [c.227]    [c.227]    [c.413]    [c.70]    [c.186]    [c.100]   
Искусственные генетические системы Т.1 (2004) -- [ c.174 , c.175 , c.176 , c.177 , c.178 , c.179 , c.180 , c.181 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Геном клетки



© 2024 chem21.info Реклама на сайте