Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки биологическая активность

    Хроматографический метод исследования используется для установления аминокислотного состава гидролизатов и первичной структуры белков в изучении аминокислотного состава плазмы и других биологических сред, при количественном определении витаминов, гормонов и иных биологически активных соединений. В силу высокой чувствительности и разрешающей способности метода хроматография применяется для выделения различных веществ в чистом виде и их идентификации. В настоящее время хроматографический анализ биологических жидкостей успешно служит целям диагностики разнообразных заболеваний. [c.174]


    Следует подчеркнуть, что в этом небольшом, казалось бы, химическом процессе - отщепление гексапептида от предшественника-заключено важное биологическое значение, поскольку при этом происходят формирование активного центра и образование трехмерной структуры трипсина, а известно (см. главы 1 и 4), что и белки биологически активны только в своей нативной трехмерной конформации. В том, что трипсин, как и другие протеиназы, вырабатывается в поджелудочной железе в неактивной форме, также имеется определенный физиологический смысл, поскольку в противном случае трипсин мог бы оказывать разрушающее протеолитическое действие не только на клетки самой железы, но и на другие ферменты, синтезируемые в ней (амилаза, липаза и др.). В то же время поджелудочная железа защищает себя еще одним механизмом-синтезом специфического белка ингибитора панкреатического трипсина. Этот ингибитор оказался [c.420]

    В анаэробных условиях биологически перерабатываются твердые, полужидкие вещества и осадки сбраживаются осадки первичных отстойников и избыточного активного ила аэробных биологических систем очистки бытовых вод и их смесей с некоторыми промышленными сточными водами. Основное преимущество анаэробного сбрах<ивания — минимальное образование биологически активных твердых веществ. Из перерабатываемых органических веществ только жиры, белки и углеводы обеспечивают выход газа при анаэробной переработке. Образующиеся при сбраживании летучие органические кислоты под действием метановых бактерий перерабатываются в метан, воду и биологически активное твердое вещество. [c.105]

    При нагревании белков выше температур, присущих живым организмам, либо при их помещении в необычные кислотные или основные условия белки постепенно утрачивают характерную для них третичную или вторичную структуру. В этом случае белок теряет свою биологическую активность, и говорят, что он денатурируется. Если денатурация протекает при очень мягких условиях, она часто бывает обратимой, т.е. при возврате к нормальным условиям биологическая активность белка [c.449]

    Развитие радиоизотопных методов позволило получить точные количественные данные о скоростях обновления в организмах биологически активных соединений. Было показано, что клетка много раз обновляет свой состав за время своего существования. Особенно интересно, что скорость замены той или иной составной части макроструктуры (например, мембраны) зависит от химической природы этой части и скорости переноса ее от места синтеза к месту функционирования высокая степень кинетической согласованности обеспечивает сохранение всей макроструктуры. Время полужизни ядерных белков около 120 ч, белков плазматической мембраны —50, фосфолипидов — от 15 до 80, холестерина от 24 до 140, цитохрома (65) —около 100 ч и т. д. [c.347]


    Наличие поперечных химических связей в белках сообщает им специфические свойства, такие, как нерастворимость, меньшая способность к набуханию под действием полярных растворителей и повышенная прочность в мокром состоянии. В небольших молекулах таких биологически активных белков, как инсулин и рибонуклеаза, поперечные дисульфидные мостики оказываются необходимыми для проявления этими белками биологической активности. При этом дисульфидные поперечные связи не участвуют непосредственно в биохимических процессах, а функции их заключаются в сохранении в неизменном состоянии такой конформации молекул белка, которая необходима для проявления биологической активности. Модификация дисульфидных поперечных связей шерсти, а также введение в нее новых поперечных связей часто придают новые интересные свойства этому белку. Такими свойствами могут быть повышение прочности на разрыв, уменьшение способности к свой-лачиванию, увеличение устойчивости к агрессивным химическим реагентам (щелочи, кислоты, окислители или восстановители), повышение устойчивости к моли и износостойкости, а также повышение прочности окрашивания. Было показано, что дубление коллагена, необходимое для превращения сырья в технический продукт, также является процессом образования поперечных связей. Поскольку коллаген не содержит цистеина или цистина, в сшивании, протекающем при дублении, участвуют, по-видимому, другие группы, возможно аминные и гидроксильные. В настоящем разделе будут рассмотрены в первую очередь поперечные химические связи упоминавшихся выше классов белков. Шерсть — типичный кератин, являющийся одним из наиболее детально изученных в этом плане белков, дает интересные и наглядные примеры образования, расщепления и поведения как дисульфидных, так и вводимых искусственно поперечных химических связей другого типа. [c.395]

    Десять лет, прошедших с момента выхода в свет второго издания книги, отмечены дальнейшим развитием химии высокомолекулярных соединений. Изучены механизмы некоторых реакций синтеза полимеров, выявлены новые свойства и возможности уже известных полимеров, синтезирован ряд новых полимеров. Интенсивно развивалась химия карбоцепных полимеров, получаемых путем термического разложения органических полимеров. Замечательны успехи химии биологически активных полимеров — биополимеров. Все это нашло отражение в новом издании книги. Пересмотрены и дополнены новыми данными все разделы, посвященные методам синтеза полимеров особенно это коснулось ионной полимеризации, полимеризации, инициированной ион-радикалами и переносом электрона, и циклополимеризации. В главе Превращение циклов в линейные полимеры заново написан раздел Ионная полимеризация циклов . Новыми данными пополнен раздел Химические превращения полимеров . Значительно расширена последняя часть книги Краткие сведения об отдельных представителях высокомолекулярных соединений . Здесь особое внимание уделено термостойким полимерам, которые приобрели чрезвычайно важное техническое значение и химия которых особенно успешно развивалась и совершенствовалась. В этом издании значительно большее внимание по сравнению с предыдущим уделено успехам в синтезе биологически активных полимеров белков и нуклеиновых кислот. Из нового издания книги исключен раздел Основы физикохимии высокомолекулярных соединений , так как в настоящее время имеется ряд книг, специально посвященных этим вопросам. [c.10]

    В промышленных масштабах ультрафильтрацией очищают сточные воды, отделяют культуральные жидкости от продуктов микробиологического синтеза, концентрируют биологически активные вещества белки, ферменты, антибиотики и т. д. [c.23]

    Книга дополнена сведениями о некоторых важнейших достижениях в органической химии-за последние годы (например, об успехе в области синтеза белка, биологически активных полипептидов и т. п.), а также о соединениях и материалах, которые за последнее время приобрели значение в народном хозяйстве (например, о полиуретанах и др.). В то же время некоторые второстепенные сведения, имевшиеся в первом издании, для экономии места опущены. [c.8]

    Вследствие необходимости создания пространственной структуры белка для образования области узнавания со строго определенным взаимным положением некоторых групп изменение аминокислотной последовательности или химической природы мономерных компонентов может приводить (не неизбежно) к драматическим последствиям для проявления белком биологической активности. Изменение положения одной из аминокислот белка, непосредственно участвующей в узнавании, приводит к потере способности формировать функционально активную пространственную структуру. [c.16]

    Наконец, при денатурации происходит утрата белками биологической активности. Воздействие денатурирующих агентов приводит к инактивации ферментов, гормонов и вирусов. Эта потеря специфических биологических свойств считается важным критерием денатурации. Однако имеется и ряд исключений. Например, активность инсулина сохраняется при денатурации мочевиной, в растворах которой сохраняют свою активность также трипсин, папаин и пепсин рибонуклеаза и лизоцим обладают тепловой устойчивостью, и их активность слабо изменяется при кипячении в разбавленной кислоте. Наряду с потерей ферментативной активности наблюдается и изменение иммунологических свойств. Как известно, иммунологическая активность белков характеризуется двумя показателями — антигенностью, т. е. способностью возбуждать образование антител, и специфичностью. Исследование этих показателей привело к выводу, что при денатурации ряда белков происходит понижение антигенности, но сохраняется иммунологическая специфичность. [c.191]


    Под действием высоких температур, а также солей тяжелых металлов вторичная и третичная структуры белков разрушаются. При этом происходит денатурация белка, т. е. потеря способности растворяться в воде. Теряется и биологическая активность. При более высокой температуре белки обугливаются, что сопровождается появлением запаха жженого рога. [c.361]

    Подобная разница в аминокислотном составе вполне понятна ведь корпускулярные белки биологически активны, их функции более сложны. [c.56]

    Фосфор также относится к макроэлементам, необходимым организму. Помимо зубной, костной и нервной тканей, фосфорные соединения входят в состав жиров (фосфолипидов), многих белков, биологически активных веществ, таких, как ферменты. Фосфор поступает в организм обычно с белковой пищей. Ученые-медики считают, что следует строго выдерживать соотношение [c.53]

    Одно из преимуществ секреции состоит в следующем в норме лишь очень немногие из собственных дрожжевых белков секретируются в среду, и при достаточно высоком уровне гетерологичной экспрессии очистка соответствующего продукта не составляет большого труда. Секреция дрожжами белков, в норме секретируемых клетками млекопитающих, обычно сопряжена с правильным формированием дисульфидных связей и как следствие с сохранением этими белками биологической активности. Мы показали, что ФРТ, активная форма которого требует образования многих дисульфидных связей и димеризации, эффективно синтезируется, собирается и секретируется дрожжевыми клетками, причем его биологическая активность не отличается от активности препаратов, выделенных из человеческих тромбоцитов [4]. [c.209]

    Широко распространенные комплексные соединения железа с порфиринами не являются единственными биологически активными соединениями этого металла. Важные биологические функции (перенос электронов, восстановление при фиксации СО2, восстановление при фиксации N2, окисление сукцината при окислительном фосфорилировании и др.) выполняют белки, содержащие железо, связанное с серой сера представлена или сульфгидрильной формой (цистеин), или так называемой лабильной серой (вероятно, 5 - или Н8 ), число атомов которой чаще всего равно числу атомов железа в молекуле белка. [c.366]

    Многие из белков человека и животных, представляющих терапевтический интерес, секретируются клетками одних типов, тогда как действие их направлено на другие клетки. Эти белки часто бывают богаты цистеином, а множественные дисульфидные связи служат основным препятствием для успешной ренатурации полипептидов, продуцируемых бактериями. Секреция дрожжами белков, которые в норме секретируются клетками млекопитающих, обычно сопряжена с правильным формированием дисульфидных связей и, как следствие, с сохранением этими белками биологической активности. [c.322]

    Денатурация (разд. 25.2)-потеря биологической активности белком вследствие разрушения его третичной структуры при нагревании, воздействии кислот или оснований или при каком-нибудь ином воздействии. [c.465]

    Все белки во всех организмах, независимо от их функции и биологической активности, построены из одного и того же основного набора 20 аминокислот, каждая из которых, взятая в отдельности, не обладает свойственной нативным белкам биологической активностью. Аминокислоты - это алфавит белковой структуры соединив их в различном порядке, можно получить почти бесконечное число последовательностей и, значит, почти бесконечное множество разнообразных белков. [c.37]

    Высокая эффективность разделения при относительно мапом объеме анализируемого раствора и простота аппаратуры явились причинами того, что капиллярный зонный электрофорез широко применяется в настоящее время для определения биологически активных ветцеств, в том числе белков, токсинов, ядохимикатов и продуктов их метаболизма, в растительных и животных тканях [117,1181. Дк разделения незаряженных молекул в раствор вводят соединения, которые образуют комплексы с определяемыми веществами. Наиболее часто в этих целях используют циклодекстрины П19 . Последние выступают в роли локомотива , который увлекает за собой нейтральные молекулы щзи движении внутри капилляра. В частности, таким способом удалось осуществить выделение некоторых ПАУ и ПХБ из биологических матриц [120,121). В [c.228]

    Получен целый ряд новых полимеров полимеров с сопряженной системой связей и комплексных полимеров, обладающих высокой термостойкостью, полупроводниковыми и другими ценными свойствами. Но наиболее разительные успехи за последние годы достигнуты в области биологически активных полимеров, так называемых биополимеров, к которым относятся белки, нуклеиновые кислоты, многие полисахариды и смешанные полимеры, содержащие, например, белковую и углеводную или углеводную и липидную компоненты. [c.8]

    В белках я-электронные системы сравнительно слабо проявляют себя. Исключительного развития эти системы достигают в соединениях, составляющих механизмы репликации и передачи наследственных признаков. Общей чертой биологически активных структур является сочетание в них областей (групп атомов), богатых энергией, групп, содержащих объединенные и обширные я-орбитали, и участков, разделяющих те и другие. Группы, богатые энергией, — это, как правило, остатки фосфорной кислоты, активные группы — органические основания определенных типов, а изолирующие вставки — углеводы (рибоза или дезоксирибоза). По такой схеме построена уже упоминавшаяся выше аденозинтрифосфорная кислота (основание —аденозин, углевод —рибоза, группа, богатая энергией, — трифосфатная —О—Р—О—Р—О— —Р—ОН). [c.349]

    Последние десятилетия ознаменовались рядом новых исследований, которые привели вначале к синтезу природных биологически активных полипептидов, содержащих сравнительно небольшое число аминокислотных звеньев . И, наконец, совсем недавно (1964) осуществлен первый синтез белка — уже упомянутого на стр. 293 инсулина, строение которого было установлено лишь немногим более 10 лет назад. [c.294]

    Число белков, химическое строение которых полностью рас-шифровано растет с каждым годом. При сопоставлении полученных результатов обнаружились два чрезвычайно интересных факта прежде всего оказалось, что хотя у разных представителей животного мира строение определенного гормона очень сходно, однако все же существуют четкие видовые отличия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как в инсулине лошади одна из 51 аминокислот заменена на другую. С другой стороны выяснилось, что носителем биологической активности может быть не вся белковая молекула, а определенная часть ее. Так, в растительном ферменте — папаине, построенном из 180 аминокислотных остатков, можно [c.335]

    В пространстве закрученная в спираль полипептидная цепь образует третичную структуру белка (рис. 3). Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, например, между атомами серы часто образуется дисульфидный мостик (—5—8—), между карбоксильной группой и гидроксильной группой имеется сложноэфирный мостик, а между карбоксильной группой и аминогруппой может возникнуть солевой мостик. Для этой структуры характерны и водородные связи. Третичная структура белка во многом обусловливает специфическую биологическую активность белковой молекулы. [c.19]

    Известно, что на биологическую активность белков влияет не только среда их функция существенным образом зависит от их строения. Обычно структурные особенности белков разделяют на несколько категорий. Первичная структура белка — ЭТО последовательность аминокислотных остатков в цепи, которая устанавливается с помощью химических методов анализа. Цепь может свертываться в спираль или принимать особую форму за счет образования водородных связей между амидными группами. Эта особенность структуры белка, являющаяся [c.300]

    Следует отметить, что в разбавленных растворах ПАВ концентрация в поверхностном слое может увеличиваться на порядок и более в результате адсорбции, особенно для биологически активных веществ (холевые кислоты, белки и др.). Это имеет большое значение для биологии, ибо в соответствии с законами кинетики во много раз увеличивается скорость процессов (в частности, ферментативных), идущих на границах раздела. [c.85]

    В микробиологической промышленности предстоит значительно увеличить производство товарного микробиологического белка и аминокислоты лизина (кормовая добавка), антибиотиков для кормовых и ветеринарных целей, кормовых витаминов, ферментных препаратов, премиксов (смесей биологически активных веществ — витаминов, микроэлементов, аминокислот), бактериальных удобрений (препаратов, содержащих полезные для сельскохозяйственных растений микроорганизмы) и Другой продукции. Так химия должна помочь решению одной из важнейших задач в области сельского хозяйства — развитию животноводства. [c.7]

    Третичная структура белка — реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль полипептидной цепи. В простейших случаях третичную структуру можно представить как спираль, которая в свою очередь свернута спиралью. У такой структуры в пространстве имеются выступы и впадины с обращенными наружу функциональными группами. Третичной структурой объясняется специфичность белковой молекулы, ее биологическая активность. [c.352]

    Важнейшее свойство белков — их способность к гидролизу. Гидролиз протекает под действием кислот или биологически активных веществ (ферментов). В результате гидролиза образуется смесь 2-аминокислот. [c.245]

    Реакционная способность одной и той же функциональной группы в различных белках может быть неодинаковой в зависимости от природы последних и от описанного выше типа экранирования. Большинство исследований по модификации белка, представлявших интерес вследствие зависимости между структурой белка и его биологической активностью или функцией, проводилось на растворимых глобулярных белках. Однако было проведено также большое количество работ по окислению фибриллярных белков (например, кератина шерсти) и по введению групп, создающих поперечные связи в этих веществах. Исследование фибриллярных белков ограничено неприменимостью критериев идеальных реакций и отсутствием у этих белков биологической активности. Таким образом, для химика, исследующего белки, понятие о доступности функциональных групп связывается главным образом с исследованиями, которые проводятся на растворимых корпускулярных белках. Нерастворимые фибриллярные белки реагируют гораздо труднее. Александер и сотрудники [40] показали, что число карбоксильных групп в шерсти, доступных для этерификации с помощью спиртов, изменяется в зависимости от молекулярного веса последних. Не все карбоксильные группы шерсти доступны даже для таких небольших молекул, как молекулы метилового спирта, который, согласно ранее проведенным исследованиям Френкель-Конрата и [c.276]

    Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс, состоящий из нескольких третичных структур белковых субъединиц, которые связаны вторичными валентными силами (ионное притяжение, водородные связи). Подобные способы пространственной организации нескольких полипептидных субъединиц - это четвертичная структура белка, которая определяет степень ассоциации третичных структур в биологически активном материале. Например, белком с четвертичной структурой является гемоглобин, который состоит из четырех субъединиц (клубков) миогло-бина - дэух молекул а-гемоглобина, каждая из которых содержит гем. [c.272]

    Фибриллярные, или волокнистые, белки (от латинского с гова ЬгШа — волокно) состоят из макромолекул в виде тонких вытянутых нитей, обычно соединенных между собой. В эту группу входят белки, являющиеся составными частями кожи и сухожилий (коллаген, желатин), волоса и рога (кератин), мышц (миозины) и др. В организме они выполняют в основном механические функция, хотя некоторые из фибриллярных белков обладают и биологической активностью. Так, названный выше миозип является ферментом он расщепляет аденазинтрифосфорную кислоту (АТФ), которая обладает большим количеством энергии, выделяемой при ее расщеплении. [c.338]

    Белки представляют собой полимеры аминокислот. Они играют роль главного структурного элемента в организмах животных. Ферменты, катализаторы биохимических реакций, по своей природе принадлежат к белкам. Все встречающиеся в природе белки образованы приблизительно 20 аминокислотами. Аминокислоты хиральны, т.е. способны существовать в виде несовместимых друг с другом изомерных форм, являющихся зеркальными отражениями друг друга,-энантиомеров. Обычно биологической активностью обладает только одна из двух энантиомерных форм. Структура белков определяется последовательностью аминокислот в полимерной цепи, скручиванием или растяжением цепи, а также общей формой молекулы. Все эти аспекты белковой структуры оказывают важное влияние на их биологическую активность. Нагревание или другие виды обработки могут инактивировать, или денатурировать, белок. [c.464]

    Хотя одна водородная связь понижает энергию системы на несколько кДж/моль, коллективное действие огромного числа водородных связей между молекулами полиамидов, полипептидов и других синтетических полимеров обусловливает прочность волокон и другие ценные свойства. Волокнистые белки живых тканей также обязаны своей структурой водородным связям между молекулами полипептидов. Водородные связи между молекулами органических веществ, содержащих ОН-, КН- и СО-группы, играют большую роль в жизни растений и животных. Небольшая энергия Н-связей приводит к тому, что в живом организме они легко возникают и разрушаются, давая начало образованию множества биологически активных к<5мпонентов важных биохимических процессов. [c.275]

    В последние годы природные полимеры, обладающие биологической активностью (белки, нуклеиновые кислоты, некоторые полисаха- [c.30]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Нуклеиновые кислоты [7] занимают особое место среди полиэфи ров. Они относятся к природным биологически активным высокомолекулярным соединениям (биополимерам) и выполняют исключительно важные функции в процессах жизнедеятельности. Нуклеиновые кислоты принимают непосредственное участие в биосинтезе белка и передаче наследственных признаков организма. [c.356]

    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]


Смотреть страницы где упоминается термин Белки биологическая активность: [c.323]    [c.226]    [c.140]    [c.140]    [c.108]    [c.119]    [c.147]    [c.80]    [c.421]   
Белки Том 1 (1956) -- [ c.282 , c.283 ]

Гены и геномы Т 2 (1998) -- [ c.6 , c.59 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматические аминокислоты в белках биологически активных

Белки с особой биологической активностью

Биологическая активность и структура белка

Биологическая активность и функциональные группы белка

Ферменты, биологическая активност белка



© 2025 chem21.info Реклама на сайте