Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смесь

    Что такое идеальная газовая смесь  [c.42]

    Процессом центрифугирования называется разделение суспензий или эмульсий под действием центробежной силы, развиваемой при вращении барабана со сплошными или дырчатыми (перфорированными) стенками, в который загружается разделяемая смесь. [c.39]

    Сыпучий материал представляет собой в общем случае механическую смесь твердых частиц различной формы и крупности. Форма частиц может быть правильной (в виде сфер или цилиндров) и неправильной. Чаще всего частицы сыпучего материала имеют различную крупность. [c.58]


    При выгрузке (рис. 43, 2) в первую очередь будут высыпаться более мелкие частицы, затем — смесь крупных и мелких частиц в различных соотношениях и в конце выгрузки из бункера будет высыпаться материал, состоящий почти из одних крупных частиц (рис. 43, 3). [c.66]

    Каждая горелка снабжена инжектором 4, который служит для инжектирования воздуха топливным газом и смешения их. Газовоздушная смесь поступает в распределительную камеру горелки и далее в мелкие керамические туннели, равномерно расположенные по всей излучающей поверхности горелки. В туннеле на участке длиной 65—70 мм заканчивается полное сгорание газовоздушной смеси. [c.103]

    Рассмотрим бинарную смесь. [c.189]

    Поскольку смесь подчиняется закону Рауля, то кривая давления паров смеси прн постоянной температуре плп изотерма выражается прямой линией АВ, так как [c.190]

    Процесс многократного испарения представляет собой ряд процессов однократного испарения. Вернемся к изобарным кривым рис. 111. Если подвергнуть однократному испарению смесь того же исходного состава при температуре t, то мы получим паровую фазу состава ц и жидкую фазу в количестве g состава х. Количество этой жидкой фазы будет [c.199]

    Процессы однократного испарения или конденсации приводят к образованию паровой фазы, более богатой летучими компонентами и жидкой фазы, менее богатой летучими компонентами, чем исходная смесь. Но и в том и другом случаях разделить жидкость или пары на чистые компоненты не удается. [c.210]

    Если в слой адсорбента постепенно вводить разделяемую смесь, то вначале будут поглощаться все компоненты смеси до полного насыщения адсорбента. Ввод дополнительного количества смеси приведет к вытеснению с поверхности адсорбента молекул с меньшей степенью адсорбируемости молекулами с большей степенью адсорбируемости. [c.257]

    Жидкая или газовая смесь пропускается через слой адсорбента, обычно сверху вниз. Цикл адсорбции заканчивается после почти полного использования поглотительной способности адсорбента, на что указывает проскок адсорбируемого вещества. Затем через адсорбент пропускают вытесняющий агент (растворитель, водяной пар и т. д.), который вытесняет адсорбированное вещество с поверхности адсорбента. Иногда этого бывает недостаточно. Например, при адсорбционной очистке масел, парафина часть смолистых ве(цеств остается па поверхности адсорбента после вытеснения. Тогда адсорбент требует дополнительной регенерации путем выжига смолистых отложений, для чего его необходимо выгружать и регенерировать в отдельном аппарате. [c.258]

Рис. 1. Плавильные печи устраивали таким образом, чтобы в них можно было получать из руды ковкий или плавкий металл. Медную руду (а) плавили в тигле. Железную руду (б) смешивали с древесным углем и, чтобы повысить температуру пламени, продували при помощи кузнечных мехов через горящую смесь воздух. Рис. 1. <a href="/info/584684">Плавильные печи</a> устраивали таким образом, чтобы в них можно было получать из руды <a href="/info/1021782">ковкий</a> или <a href="/info/20437">плавкий</a> металл. <a href="/info/899525">Медную руду</a> (а) плавили в тигле. <a href="/info/17598">Железную руду</a> (б) смешивали с древесным углем и, чтобы повысить температуру пламени, продували при помощи <a href="/info/1359675">кузнечных мехов</a> через горящую смесь воздух.

    Далее Блэк показал, что если оксид кальция оставить на воздухе, то он медленно превращается в карбонат кальция. Исходя из этого, Блэк заключил (правильно ), что в атмосфере присутствует небольшое количество углекислого газа. Это было первое четкое указание на то, что воздух не простое вещество и, следовательно, вопреки представлениям древних греков он не является элементом в определении Бойля, а представляет собой смесь по крайней мере двух различных веществ обычного воздуха и углекислого газа. Изучая влияние нагревания на примере карбоната кальция, Блэк установил, как меняется вес вещества при нагревании. Он также определил, какое количество карбоната кальция нейтрализует заданное количество кислоты. Таким образом, Блэк изучал химические реакции, используя метод количественного измерения. Этот метод был развит и усовершенствован Лавуазье. [c.40]

    Кислотам противостоит группа веществ, называемых основани ями. (Сильные основания получили название щелочей.) Эти вещества имеют горький вкус, химически активны, меняют цвета-красителей, но на противоположные по сравнению с кислотами и т. д. Растворы кислот нейтрализуют растворы оснований. Другими словами, смесь кислоты и основания, взятых в определенной соотношении, не проявляет свойств ни кислоты, ни основания. Эта смесь представляет собой раствор соли, которая обычно химически значительно менее активна, чем кислота или основание. Таким образом, при смешении соответствующих количеств раство- ров сильной и едкой кислоты (соляной кислоты) с сильной и едкой щелочью (гидроксидом натрия) получается раствор хлорида натрия, т. е. обыкновенной поваренной соли. [c.53]

    В качестве источника света эти ученые пользовались изобретенной Бунзеном горелкой — той самой бунзеновской горелкой, которая известна каждому начинающему химику. Сгорающая в горелке смесь газа и воздуха дает почти бесцветное пламя с достаточно высокой температурой. Когда Кирхгоф помещал в пламя горелки крупицы различных химических веществ, оно окрашивалось в разные цвета. Свет от такого пламени, пропущенный через призму, давал не сплошную полосу, а отдельные яркие линии. [c.100]

    Но это правило Бертло, на первый взгляд представлявшееся вполне приемлемым, было ошибочным. Во-первых, не все самопроизвольные реакции протекают с выделением теплоты некоторые реакции сопровождаются поглощением теплоты, и в ходе таких реакций температура среды, окружающей реакционную смесь, действительно понижается. [c.110]

    Во времена Бертло обратимые реакции были уже известны. В 1850 г. Уильямсон первым тщательно изучил их. Основываясь на результатах проведенных им работ, Уильямсон (см. гл. 7) предложил структурные формулы эфиров. Он нашел условия, при которых смесь веществ А и В образовывала вещества С и О, а смесь веществ С и О образовывала вещества А и В. Однако и в том, и в другом случае в итоге получалась смесь веществ А, В, С и О, причем соотношение этих компонентов было определенным. Смесь прн этом находилась в состоянии равновесия. [c.110]

    А И В. Обе реакции идут непрерывно, но они нейтрализуют друг друга, создавая иллюзию покоя, тогда как в действительности смесь находится в состоянии динамического равновесия. [c.111]

    На рис. 6 изображен отстойник нолунепрерывного действия для разделения суспензий. Смесь поступает в отстойник сверху. Осадок оседает на дно аппарата и периодически выгружается. Жидкость выводится из аппарата непрерывно. [c.26]

    Отстойники для разделения эмульсий обычно работают непрерывно. На рис. 8 а представлен отстойник для разделения воды и нефтепродукта. Смесь поступает в отстойник вблизи уровня раздела фаз. Уровень воды мо- кет поддерягиваться автоматичес1ги регулятором уровня либо при П0М0ПЦ1 сифона или утки . [c.27]

    Рассмлрим смесь, состоящую пз п компонентов, имеющих. массу [c.170]

    Прямая EFG отвечает давлению системы, при котором кпинт смесь данного состава. [c.191]

    Для смесе1г с максимумом давления паров характерно наличие минимума температуры кипения на изобарной кривой, причем эта температура ни 1 е температуры к ипения чистого ни.э ко кипящего компонента. Кривые испарения и конденсации такой системы сходятся в точке минимума температуры кипения либо максимума да-кления паров, отвечающей онределенному составу смеси. В этой точке состав паровой и жидкой фаз совпадет, т. е. образуется постоянно кипящая смесь. Такая смесь называется азеотропной. [c.194]

    Системы с минимумом давления паров имеют максимум температуры кипения на изобарной кривой, причем эта температура выше температуры кипенпя высококипящего компопепта, а кривые испарения и кондеш ации сходятся в этой точке. Такпе системы также образуют азеотропную смесь. В таких системах до точки максимума [c.195]

    При перегонке азеотроппые смеси выделяют пары, одинаковые по составу с исходной смесью, вследствие чего они но могут быть разделены перегонкой иа чистые компоненты. Смесь образуютцая азеотроп, может быть разделена только на азеотропную смесь и компонент, содержащийся в избытке в исходной смеси. Рассмотрим в качестве примера спиртоводную смесь с минимумом температуры кипения, отвечающему сппрту с концентрацией 95, 57%. Если подвергнуть перегонке спиртоводпую смесь меньшей концеитрации, ТО будет перегоняться смесь, содержащая 95,57% спирта и 4,43%> воды, а в остатке останется вода. [c.195]


    Рассмотренная выше простая 1 олонпа позволяет разделить смесь на два продукта — ректификат или дистиллят, получаемый с верха колонны, и остаток, получаемый с низа колонны. [c.222]

    Согласно схеме I в первой колонне отбираются три компонента (а, б и е), а наиболее высококипящий компонент выделяется в виде остатка. Орошением колонны служит смесь компонентов а, б и б. Следующий высококипящий компонент отбирается в виде остатка второй колонны, а два остальных отгоняются в виде ректификата и служат орошением второй колонны. Наконец, в третьей колонне разделяются компоненты а и б, ил1еющие наиболее низкие температуры кипения. [c.222]

    Когда такой процесс разделения ведется в колонке, заполненной адсорбентом, в один конец которой непрерывно вводится разделяемая смесь, процесс адсорбции идет послойно, т. е. по ходу движения смеси будут располагаться компоненты с все более низкой адсорбируемостью. Из колонки будет выходить поток, содержащий только менее адсорбируемые компоненты, до тех нор, пока пся поверхность адсорбента не занолпится компопентом, имеющим более высокую степень адсорбируемости. Если после этого продолжить пропускание разделяемой смеси, произойдет проскок адсорбируемого компонента, т. о. он появится в потоке, выходяп ем из колонки. [c.258]

    Процесс ароматизации бензинов под давлением в присутствии водорода, являющийся эндотермическим, может оформляться в виде двух- пли трехколонных реакторов, заполненных катализатором. Реакционная смесь нагревается в нечи и поступает в первый реактор, [c.278]

    Пустотелая реакционная камера установок термического крекинга, п которую направляется реакционная смесь пз змеевиков печей, также представляет собо1г реактор адиабатического типа. [c.281]

    Например, еще в 1794 г. финский химик Юхан Гадолин (1760— 1852) предположил, что в минерале, полученном из Иттербийского-карьера, расположенного вблизи Стокгольма, содержится новый оксид металла (или земля). Поскольку эта новая земля значительна отличалась от уже известных земель, например кремнезема, извести и магнезии, то ее отнесли к редким землям. Гадолин назвал открытый им оксид иттрия по названию карьера спустя 50 лет из этога оксида был выделен в относительно чистом виде новый элемент — иттрий. Примерно в середине XIX столетия химики начали интенсивно изучать состав редкоземельных минералов. Проведенные исследования показали, что эти минералы содержат целую группу новых элементов — редкоземельных элементов. Шведский химик. Карл Густав Мосандер (1797—1858) открыл, например, в конце 30-х — начале 40-х годов XIX в. четыре редкоземельных элемента лантан, эрбий, тербий и дидим. На самом деле их было пять поскольку спустя сорок лет в 1885 г. австрийский химик Карл Ауэр фон Вельсбах (1858—1929) обнаружил, что дидим представляет собой смесь двух элементов, которые он назвал празеодимом и неодимом. Лекок де Буабодран также открыл два редкоземельных элемента самарий в 1879 г, и диспрозий в 1886 г. Сразу два редкоземельных элемента — гольмий и тулий описал в 1879 г, П. Т, Клеве, а в 1907 г. французский химик Жорж Урбэн (1872—1938) сообщил о новом четырнадцатом редкоземельном элементе — лютеции (Лютеция — древнее название Парижа). [c.104]


Смотреть страницы где упоминается термин Смесь: [c.71]    [c.71]    [c.112]    [c.33]    [c.61]    [c.1]    [c.49]    [c.51]    [c.28]    [c.181]    [c.195]    [c.195]    [c.206]    [c.252]    [c.253]    [c.253]    [c.254]    [c.280]    [c.286]    [c.21]   
Руководство по лабораторной ректификации 1960 (1960) -- [ c.0 ]

Неорганическая химия (1981) -- [ c.13 ]

Препаративная органическая химия (1959) -- [ c.0 ]

Приготовление растворов для химико-аналитических работ (1964) -- [ c.0 ]

Руководство по физической химии (1988) -- [ c.0 ]

Препаративная органическая химия (1959) -- [ c.0 ]

Фазовые равновесия в химической технологии (1989) -- [ c.0 ]

Химическая термодинамика (1963) -- [ c.349 , c.350 ]

Основы физико-химического анализа (1976) -- [ c.0 ]

Практикум по физической химии изд3 (1964) -- [ c.0 ]

Гетерогенные равновесия (1968) -- [ c.0 ]

Жидкостная колоночная хроматография том 3 (1978) -- [ c.0 ]

Руководство по малому практикуму по органической химии (1964) -- [ c.0 ]

История химии (1975) -- [ c.107 ]

Химические товары справочник часть 1 часть 2 издание 2 (1961) -- [ c.0 ]

Химические товары Справочник Часть 1,2 (1959) -- [ c.0 ]

Общая и неорганическая химия (1981) -- [ c.0 ]

Неорганическая химия (1981) -- [ c.13 ]

Общая и неорганическая химия (1959) -- [ c.20 ]

Поверхностно-активные вещества _1979 (1979) -- [ c.0 ]

Производство эфиров целлюлозы (1974) -- [ c.0 ]

Химические добавки к полимерам (1973) -- [ c.0 ]

Химический анализ воздуха промышленных предприятий (1965) -- [ c.0 ]

Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.0 ]

Производство и применение резинотехнических изделий (2006) -- [ c.0 ]

Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.10 ]

История химии (1966) -- [ c.107 ]

Общая химия (1968) -- [ c.23 , c.151 ]

Практикум по физической химии Изд 3 (1964) -- [ c.0 ]

Химия горения (1988) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте