Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сверхпроводимость соединений

    Исследования сверхпроводимости соединений. [В т. ч. eN]. [c.192]

    У некоторых металлов, их сплавов и соединений при температурах, близких к абсолютному нулю, наблюдается сверхпроводимость (1)-" ) В проводниках второго рода, например электролитах, электрический ток обусловлен перемещением ионов и плотность тока равна [c.35]

    В настоящее время вопрос о сверхпроводимости химических соединений и сплавов находится еще в стадии первоначального накопления экспериментального материала. Однако уже имеющиеся сведения дают основание ожидать, что по мере накопления таких данных будут выявлены основные закономерности зависимости сверхпроводимости от химического состава и структуры материала и на основе этого будут разработаны методы создания веществ с более благоприятным сочетанием свойств, будет расширена область сверхпроводимости и найдены более широкие возможности практического использования этого явления (подобно тому, как это было достигнуто в области полупроводников). [c.157]


    Разнообразие типов химической связи и кристаллических структур обусловливает у интерметаллических соединений широкий спектр физико-химических, электрических, магнитных, механических и других свойств. Так, их электрические свойства могут иногда изменяться от сверхпроводимости в жидком гелии до полупроводимости при обычных условиях. [c.277]

    СВЕРХПРОВОДИМОСТЬ — явление, заключающееся в том, что при охлаждении металлов, сплавов и отдельных химических соединений ниже определенной, т. наз. критической температуры Тк, исчезает электрическое сопротивление (уменьшается до величины, которую нельзя измерить даже самыми чувствительными приборами). Для чистых элементов Тк изменяется от 0,35 (Н1) до [c.219]

    Ванадий образует ряд соединений с кремнием (силициды ванадия), Из них силицид состава УдЗ прн температуре 17° К приобретает свойство сверхпроводимости — омическое сопротивление падает до нуля. [c.490]

    Соединения ванадия, ниобия и тантала с азотом, углеродом, кремнием и бором обладают металлической электропроводностью, растущей с понижением температуры и переходящей в сверхпроводимость, как и у чистых металлов. [c.96]

    Нитриды переходных металлов IV—V групп — металлоподобные химически устойчивые соединения Для них характерны высокие твердость и температура плавления (TiN, ZrN, HfN) а для некоторых — сверхпроводимость (NbN). [c.258]

    Металлы подгруппы скандия и их соединения широкого применения пока не имеют. Однако в настоящее время намечаются пути использования соединений скандия в электронике некоторые ферриты, содержащие небольшие количества оксида скандия, применяются в быстродействующих счетно-решающих устройствах. Металлический скандий используется в электровакуумной технике как геттер (поглотитель газов). Оксид иттрия также применяется в производстве ферритов, лазеров и материалов, имеющих высокотемпературную сверхпроводимость. Ферриты, содержащие иттрий, используются в слуховых приборах, в ячейках памяти счетно-решающих устройств. Изотоп применяют в медицине. Лантан применяется главным образом в смеси с лантаноидами. [c.315]

    На основе понимания теоретических законов и экспериментов химики научились синтезировать новые химические соединения, которые находят применение в практике, например соединения благородных газов соединения, обладающие высокотемпературной сверхпроводимостью, высокой ионной проводимостью (ионные сверхпроводники) полимеры с особыми свойствами, например полимерные проводники первого рода соединения включения (клатраты) и слоистые соединения конструкционная и электротехническая керамика и т, д. [c.431]


    Все соединения ванадия токсичны. Ванадий, ниобий, тантал широко используются в металловедении ванадий как легирующая добавка к стали, повышающая ее пластичность и устойчивость к истиранию использование ниобия связано с его сверхпроводимостью. Ниобий и тантал применяются также в качеств материалов для сверхзвуковых самолетов и ракет, танталовая проволока внедряется в современной хирургии. Карбид ниобия наряду с карбидами вольфрама, хрома и других переходных металлов служит для получения жаростойких сверхтвердых сплавов. Соединения ванадия применяются в качестве катализаторов. [c.520]

    Отношение к элементарным окислителям. Г и д р и д ы -металлов V группы — металлообразные соединения, обладающие электронной проводимостью и способные переходить в состояние сверхпроводимости. Гидриды ванадия, ниобия и тантала способны образовать растворы с твердыми и жидкими металлами, и это вызывает, как и у -металлов IV группы, отклонение от закона Сивертса и обусловливает большую растворимость водорода в этих металлах, уменьшающуюся при увеличении температуры. Гидриды ниобия более устойчивы, чем гидриды ванадия. Зависимость от температуры растворимости водорода в этих металлах приведена на рис. 174. [c.336]

    Нитриды -металлов VI группы менее прочны, чем нитриды металлов предыдущих групп, и при их образова нии выделяется меньшее количество энергии. Удельное сопротивление у них, как правило, выше и сверхпроводимостью обладают лишь нитриды молибдена. Формулы нитридов довольно разнообразны, но в табл.12.27 приведены данные для наиболее характерных нитридов R2N и КЫ У этих соединений существует значительная широта области гомогенности. [c.348]

    Свойства сверхпроводимости, например, не связаны с движением квазичастиц. Они связаны с характером основного состояния. По этой причине возможно, что высокотемпературной сверхпроводимостью будут обладать именно некристаллические тела. Эксперимент в известной мере подтвердил это предположение американские ученые из Пенсильванского университета в 1973 г. наблюдали в сложных органических соединениях явление сверхпроводимости, исчезающее при Тс 0 К ( )  [c.14]

    Для соединений низшей степени окисления d-металлов характерна значительная широта области гомогенности они сохраняют кристаллическую структуру при значительных колебаниях количественного состава. При наличии кислородных вакансий оксид титана ТЮ обладает металлической проводимостью. Эти свойства особенно часто проявляют соединения -металлов с элементами-окислителями с относительно небольшой электроотрицательностью (S, N, С, Si, В). Их назьшают металлообразными соединениями. Они обладают значительной широтой области гомогенности, проводят электрический ток и многие из них переходят в состояние сверхпроводимости. Металлообразные соединения растворяются в металлах, образуя главным образом жидкие растворы, распадающиеся в процессе кристаллизации. Образование таких соединений особенно характерно для -металлов, в которых электроны подуровня d принимают участие в образовании химических связей в первую очередь. [c.332]

Табл. I,-СВЕРХПРОВОДИМОСТЬ ПРОСТЫХ ВЕЩЕСТВ И ХИМИЧЕСКИХ СОЕДИНЕНИЙ Табл. I,-СВЕРХПРОВОДИМОСТЬ <a href="/info/3252">ПРОСТЫХ ВЕЩЕСТВ</a> И ХИМИЧЕСКИХ СОЕДИНЕНИЙ
    ТОЛЬКО индивидуальные металлы, но и сплавы, и химические соединения разных классов, например УВг, VN, ОеТе, 8гТ(Оз, причем у некоторых веществ (Уз51, N 380) критическая температура сверхпроводимости существенно вьше, чем у индивидуальных металлов (например, 18° К у N53811). [c.157]

    Фазовые переходы 2-го рода получены в форме сверхпроводимости для таких соединений, как ЫЬзОе, МЬзЗп, V—Ва— Си—О, Ьа—5г—Си—О. Сверхпроводимостью также обладают некоторые вещества при температурах, близких к комнатным, что очень важно для развития электроэнергетики. Для фазовых переходов 2-го рода невозможно получить метастабильное состояние вещества, так как каждая фаза существует при строго определенных условиях, как показано на рис. 40а, б. [c.173]

    Большое число публикаций по МСС углерода в шестидесятые—восьмидесятые годы было связано, в первую очерель, с поисками слоистых соединений графита, имеющих теплую сверхпроводимость. До последнего времени эти надежды не оправдались, что и обусловило сокращение работ по МСС. Продолжает оставаться научный интерес к моделям для исследования двумерных физических явлений. В последние годы интенсивно проводятся работы по созданию на основе МСС углерода высоко- [c.258]

    Металлические вещества, нестехиометрические соединения. Переходные металлы склонны к образованию соединений включения, в которых атомы X занимают пустоты в плотнейшей упаковке металла. Часто эти соединения имеют нестехиометри-ческий состав. Их отличительные свойства — металлический блеск, высокая твердость и хорошая электропроводность, что связано с сохранением зонной структуры металла. У некоторых нитридов обнаружена даже сверхпроводимость. Сами металлы и их соединения включения (а также карбиды и бориды) по величине проводимости можно расположить в следующий ряд металл > карбиды > фосфиды > нитриды > бориды. [c.533]


    Ниобий образует многочисленные соединения с другими металлами. Некоторые из них (например, НЬз8п при 48° К) обладают свойствами сверхпроводимости. [c.490]

    Технеций — металл с плотностью 11,5 г см . При Т = 11,2° К проявляет свойство сверхпроводимости. Химически активен. В своих соединениях проявляет различные степени валентности +2, +4, б и -4-7. В качестве примера укажем на технециевую кислоту НТСО4 (розовый раствор) и ее соль НаТс04 — пертехнетат натрия. Сильный окислитель. Эффективный ингибитор коррозии металлов однако на практике широко не используется вследствие пока небольших количеств получаемого технеция. [c.533]

    Нитриды GaN, InN, TIN принадлежат к соединениям типа А "В (А — элемент III группы, а В — элемент V группы). Эти соединения изоэлектронны простым веществам, образованным элементами IV группы (например, Si, Ge) и обладают полупроводниковыми свойствами. В большинстве полупроводниковых соединений типа, А "В атомы находятся в тетраэдрической координации друг относительно друга и кристаллизуются в решетке типа сфалерита или вюртцита. Так, GaN, InN и TIN кристаллизуются в решетке типа вюртцита, а МР, MAs, MSb, где M=Ga, In — в решетке типа сфалерита. Нитриды элементов подгруппы галлия отличаются высокой химической устойчивостью и близки по структуре к алмазу и алмазоподобному BN. Наибольшей химической устойчивостью отличается GaN. Он не взаимодействует с водой, разбавленными и концентрированными кислотами, устойчив при нагревании на воздухе до 1000° С. При комнатной температуре GaN является полупроводником, а при низких температурах обладает сверхпроводимостью. По своей химической устойчивости InN значительно уступает GaN, он легко реагирует с растворами кислот и щелочей, окисляется на воздухе выше 300° С. Теплоты образования GaNxB и InNxB при 25° С соответственно равны 26,4 и 4,2 ккал/моль. [c.177]

    Соединения платиноидов используются в меньшей степени. Так, Рс1С12 используют как индикатор на угарный газ СО в атмосфере, поскольку СО Б растворах способен восстанавливать РсЗО до металлического палладия. Интерметаллические соединения платиноидов оказались перспективными сверхпроводниками со сравнительно высокими критическими температурами сверхпроводимости. Производные платины (+6), например Р1Рц, используются в неорганическом синтезе как суперокислители. Комплексные соединения платиноидов находят применение для разделения металлов в процессе аффинажа. [c.427]

    Галлий может заменять ртуть в выпрямителях электрического тока (галлиевые выпрямители обладают при тех же размерах большей мош,ностью). Галлиевые лампы (галлий с добавкой цинка, кадмия или алюминия) дают свет, более богатый синими и красными лучами по сравнению с ртутными лампами [80]. У галлия хорошая отражательная способность (88%), что используется в производстве оптических зеркал специального назначения. Окись галлия применяется в стеклах с высоким показателем преломления и другими специфическими свойствами [80]. Некоторые интерметаллические соединения галлия, например УзОа, обладают сверхпроводимостью при сравнительно высокой температуре (до 14,5°К), что облегчает практическое использование этого свойства, например, в сверхпроводящих электромагнитах [80]. Предложено добавлять галлий в качестве легирующей присадки к магнию и к сплавам на магниевой основе для увеличения их прочности, твердости и ковкости. Сплавы, содержащие галлий, предложены для зубоврачебной техники [8П. [c.246]

    Пытаясь выяснить роль примесей в формировании остаточного сопротивления [см. (392а)], Камерлинг-Оннес провел в 1911 г. опыты с очищенной ртутью. Результаты этих опытов оказались неожиданными при температуре 4,2 К электрическое сопротивление ртути в интервале температуры —0,05 К падало до нуля. Электрический ток, индуцированный в кольце из такого проводника, сохранялся неизменным в течение сколь угодно долгого времени. Это явление, естественно, получило название сверхпроводимости. Температура при которой происходит переход вещества в сверхпроводящее состояние, называли критической температурой. В настоящее время сверхпроводимость обнаружена у 30 химических элементов и более чем у 1000 сплавов и химических соединений. Критические-температуры известных сверхпроводников лежат в интервале от очень низких температур до —23 К в случае сплавов системы МЬ—Ое. [c.258]


Библиография для Сверхпроводимость соединений: [c.517]    [c.129]   
Смотреть страницы где упоминается термин Сверхпроводимость соединений: [c.258]    [c.41]    [c.19]    [c.638]    [c.129]    [c.227]    [c.310]    [c.381]    [c.382]    [c.319]    [c.85]    [c.217]    [c.431]    [c.405]    [c.381]    [c.365]    [c.298]   
Справочник по физико-техническим основам глубокого охлаждения (1963) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Сверхпроводимость



© 2025 chem21.info Реклама на сайте