Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергетическое упругое деформирование цепи

    Энергетическое упругое деформирование цепи [c.126]

    До сих пор не учитывалось энергетическое упругое деформирование (предположительно жесткого) скелета цени. Однако в ответ на действие осевых сил скелет цепи будет деформироваться путем заторможенного вращения, изгиба и растяжения основных цепных связей [9]. В табл. 5.3 приведены модули. [c.126]

    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]


    Теперь можно определить изменение свободной энергии F частично вытянутой цепи в зависимости от расстояния между ее концами г. В рамках модели изгиба и растяжения связей рассмотрим пример квазистатического деформирования сегментов ПЭ. Минимум свободной энергии сегмента, содержащего п С—С-связей и nk 2 1-кинк-изомеров, получается на расстоянии между концами цепи л = п — Пц) 212, а. Этот минимум равен Пк AU — RT nZ. Значения минимума свободной энергии рассчитываются с помощью статистического веса конформаций п, п ) сегментов ПЭ с и = 40 (табл. 5.1). Соответствующая свободная энергия приведена на рис. 5.1 в зависимости от расстояния между концами цепи. Если концы цепи смещаются вдоль оси из данных положений равновесия, то возникают энергетические силы упругой деформации, соответствующие несимметричному потенциалу. При растяжении полностью вытянутых участков полимера модуль цепи Estr определяет деформирование транссвязей в плоскости зигзага цепи. Гош-связи совершают заторможенное вращение вне плоскости зигзага цепи (Erot)- Тогда модуль при растяжении Е сегмента с кинк-изомерами получается из уравнения (5.22). Чем меньше гош-связей содержит цепь, тем она жестче. С помощью указанного выше потенциала вращения [7] и модуля вытянутой цепи (200 ГПа) рассчитаны участки кривых свободной энергии, соответствующие растяжению. Наличие лишь 5 кинк-изомеров заметно смягчает сегмент [c.128]

    Подобная картина свойств необходима в широком диапазоне изменений как температуры, так и частоты и к тому же для более чем одной моды деформации, поскольку интенсивность и положения переходов зависят от вида напряжения. На практике применяется растяжение (включая изгиб), сдвиг (включая кручение) и трехосное деформирование. Тем не менее, более естественно подразделение на типы колебаний, а не на виды напря-жения, потому, что виды деформации обусловливают диапазон частот в отличие от методов ступенчатого возбуждения (см. главу 5), которые не имеют подобных резко отличающихся временных интервалов. Основная классификация испытаний включает свободные колебания, вынужденные колебания (резонансные или нерезонансные) и волновое распространение, приближенно перекрывая соответственно следующие диапазоны частот 0,01— 10 Гц 10—5-10 Гц и 5-10 —16 Гц. Аналогичное подразделение имеется в экспериментах по диэлектрической проницаемости. Мостовая техника, соответствующая вынужденным методам механических колебаний, используется на частотах 10—16 Гц. Начиная с 10 Гц, применяются резонансные радиочастотные схемы. Выше 10 Гц начинает доминировать индуктивность, и методы ламповых схем приходится заменять методами распределенных цепей, опирающимися на волновое распространение через диэлектрическую среду. Это соответствует распространению колебаний на ультразвуковых частотах в вязкоупругой среде, причем связанных с теми же самыми экспериментальными трудностями потерь энергии на границах раздела сред, отражением волн, эффектом согласования генератора с образцом и т. п. Как правило, амплитуда возбуждения уменьшается с ростом частоты из-за ограничения энергетических возможностей аппаратуры, но даже на самых низких частотах большинство типичных экспериментов проводится в области линейности. Этим объясняется, почему анализ относительно прост. Значительно более важно то, что функция динамического отклика не определяется через интеграл свертки, так что уникальные среди вязкоупругих функций комплексные модуль и податливость могут быть непосредственно подставлены в качестве упругого модуля или упругой податливости в любые формулы зависимости напряжения от деформации, и для вязкоупругих материалов могут быть выбраны известные решения упругих колебательных систем. Это свойство будет использовано в следующих разделах. [c.61]


    Возможность развития больших упругих деформаций представляет собой характерную особенность механических свойств полимеров в любых физических состояниях. Наиболее детально это явление изучено применительно к сшитым полимерам (резинам), находяшимся в высокоэластическом состоянии. Важнейшим фактом здесь оказалось установление энтропийной природы больших упругих деформаций, в связи с чем они получили особое название — высокоэластических деформаций. Согласно известным представлениям высокоэластические деформации связаны с изменением числа возможных конформаций участков цепей, заключенных между соседними сшивками. При этом предполагается, что не происходит никаких изменений внутренней энергии полимера. Экспериментальные исследования показали, что существуют реальные материалы, поведение которых м аксимально приближается к теоретически предсказываемому поведению идеального эластомера , у которого напряжения при деформации обусловлены только изменением энтропии структурной сетки. Однако даже среди типичных резин известны многочисленные более или менее сильные отклонения от идеального поведения, так что при деформировании определенную роль играют и энергетические эффекты. [c.106]


Смотреть страницы где упоминается термин Энергетическое упругое деформирование цепи: [c.312]   
Смотреть главы в:

Разрушение полимеров -> Энергетическое упругое деформирование цепи




ПОИСК





Смотрите так же термины и статьи:

Деформирование



© 2025 chem21.info Реклама на сайте