Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллические полимеры и особенности их механических свойств

    Механические модели типа моделей Максвелла и Кельвина — Фойхта не всегда правильно передают основные особенности механического поведения полимеров. Обычно каждая модель достоверно передает лишь какую-либо одну из особенностей механических свойств эластомеров. В дальнейшем мы увидим, что некоторые модели отображают и свойства стеклообразных и кристаллических полимеров. [c.125]


    Ряд полимеров может существовать в кристаллическом состоянии. Механические свойства кристаллических полимеров отличаются от свойств низкомолекулярных кристаллических веществ. Прочность полимерного материала не может быть рассчитана простым суммированием прочности всех связей, приходящихся на поперечное сечение образца и противодействующих разделению его на части. Причиной этого является наличие микродефектов различной степени опасности, которые случайно распределены по объему образца. На краях этих микродефектов возникают перенапряжения, тем большие, чем опаснее микродефект. Наличие в полимерах надмолекулярных структур может явиться причиной увеличения их неоднородности. Это особенно существенно для кристаллизующихся полимеров, которые разрушаются по поверхностям, ограничивающим кристаллические образования. [c.40]

    Именно в своеобразии механических свойств, которое в значительной мере обусловлено наличием взаимно связанных кристаллических и неупорядоченных областей, заключается главная особенность кристаллических полимеров, резко отличающая их от аморфных. [c.452]

    В настоящей главе рассматриваются особенности поведения при ударных нагрузках различных классов полимеров — резин, частично кристаллических материалов, стекол и т. д. Это рассмотрение связано с современными теориями, объясняющими особенности механических свойств различных материалов. Данные испытаний на разрушение при ударе сопоставлены с результатами экспериментов, проведенных методом высокоскоростного растяжения. [c.380]

    Однако даже в эластомерах на последних стадиях кристаллизации поликристаллы (сферолиты или зерна) занимают, как правило, практически весь объем образца. Это означает, что большую часть поликристаллов занимает не собственно кристаллический материал, а проходные цепи и аморфные прослойки между соседними ламелярными кристаллами наличие этих макродефектов определяет особенности механических свойств предельно закристаллизованных эластомеров. Поэтому при рассмотрении влияния условий кристаллизации на морфологию, а морфологии — на механические свойства полимеров иногда пользуются представлениями о дефектах, рассматривая даже не связанную с монокристаллами аморфную часть как макродефекты. К сожалению, до сих пор отсутствует строгая количественная теория, которая бы дала возможность обосновать такое рассмотрение и разделить собственно дефекты внутри кристалла от складок и проходных цепей, от аморфной части, не связанной с монокристаллами, но входящей в качестве дефектов в поликристалл, а также от аморфной части, остающейся за границами поликристаллов и не связанной с ними, к которой только и может быть строго отнесено понятие аморфная фаза (по-видимому, доля ее на последних стадиях кристаллизации весьма мала даже в эластомерах). [c.26]


    Полагая, что особенности механических свойств полимеров определяются в основном аморфным пространством и что кристаллиты в силовом поле только поворачиваются или разрушаются, некоторые исследователи пытаются связать механические характеристики полимеров непосредственно со степенью кристалличности. Однако во многих случаях однозначного соответствия между степенью кристалличности и механическими свойствами не наблюдается . Например, по данным рентгеноструктурного анализа было установлено что после термической обработки кристаллического полиамида 68 никаких заметных изменений в нем не произошло. Но при этом существенно изменилась сферолитная структура, что сильно отразилось на износостойкости полимера. [c.330]

    В общем случае это неверно возможность проявления особенностей механических свойств полимеров сохраняется у аморфных полимеров в области вынужденной эластичности, а у частично кристаллических — в некоторых случаях вплоть до очень низких температур, много ниже Tg. — Прим. ред. перев. [c.14]

    Размеры структурных элементов существенно влияют на механические свойства полимеров, при этом чем они больше, тем больше напряжение рекристаллизации, больше хрупкость образца и меньше его удлинение [23]. Наилучшие механические свойства достигаются при достаточно малых размерах сферолитов. Естественно, что процесс разрушения структуры полимера при приложении внешней силы, как и процесс ее образования, носит многоступенчатый характер. Это особенно существенно при изучении закономерностей деформации полимеров. При любом малом и кратковременном приложении внешней силы происходит разрушение каких-либо ступеней структуры полимера, которые в различной степени перестраиваются и вновь образуются как в процессе деформирования, так и после его прекращения. Поэтому под процессом рекристаллизации следует понимать любые преобразования как первичной, так и вторичной кристаллической структуры [19]. [c.21]

    Понятие о кинетически стабильных элементах структуры в полимерах не имеет строгого количественного критерия, но чем больше т при прочих равных условиях, тем больше кинетическая стабильность данного элемента структуры. Практически же под кинетически стабильными понимаются те флуктуационные структурные элементы, время жизни которых превышает длительность исследуемого процесса. К образованию флуктуационных структур, характеризуемых большей или меньшей кинетической стабильностью, способны все гибкоцепные полимеры, в том числе эластомеры. С точки зрения структурных особенностей эластомеров их можно считать высокомолекулярными жидкостями с более сложной структурой, чем простые жидкости. Эластомеры находятся в жидком агрегатном состоянии, но отличаются очень высокой вязкостью, поэтому их можно назвать полимерными высоковязкими жидкостями. С другой стороны, эластомеры из-за их высокой вязкости при недлительных нагружениях по своим механическим свойствам подобны упругим твердым телам. К твердым телам относятся как кристаллические, так и аморфные тела (стекла). Жидкости характеризуются непрерывно изменяющейся структурой, которая зависит от температуры Т и давления р. Для твердых же тел характерна неизменность структуры в области существования твердого состояния с данным типом структуры. Таким образо , твердое состояние ве-и ества отличается от жидкого не только структурой, но и ее постоянством при изменении внешних условий. При этом для кристаллов характерны наличие дальнего порядка и термодинамическая стабильность, а для стекол — наличие ближнего порядка и кинетическая стабильность (время жизни структурных элементов в стекле обычно существенно выше времени наблюдения). [c.25]

    Возможность более простой регистрации, когда не полностью стереорегулярный полимер получается в кристаллической форме непосредственно в ходе его приготовления, определяется конкретными условиями полимеризации. Еще задолго до детальных исследований процессов полимеризации, приводящих к образованию стереорегулярных полимеров, было известно, что -некоторые полимеры (например, поливинилхлорид, полиакрилонитрил, политрифторхлорэтилен и поливиниловый спирт) получаются обычно сразу в кристаллической форме, несмотря на больщую вероятность стереохимических нерегулярностей. Нередко в подобных случаях рентгеноструктурный анализ не подтверждает с полной определенностью наличие развитой кристалличности. Однако особенно для поливинилхлорида [46, 47] и полиакрилонитрила [48], анализ свойств этих полимеров в растворе и механических свойств дал явные подтверждения их кристалличности. Последующее получение указанных полимеров новыми методами, обеспечивающими повыщенную регулярность цепей, также подтвердило эти наблюдения [36, 49]. [c.111]

    Кристаллические полимеры и особенности их механических свойств [c.171]


    Соотношение аморфной и кристаллической фаз в значительной степени определяют свойства полимера, особенно его механические характеристики. [c.258]

    В меньшей степени выяснено влиянне химического строения полимерных молекул на прочность полимеров. Влияние типа химических связей в цепях полимеров на прочность и долговечность твердых полимеров очевидна. Основная трудность исследования этого вопроса заключается в том, что химическое строение цепей не является единственной характеристикой, влияюш,ей на прочность полимера. Так, например, механические свойства одного и того же полимера сильно отличаются в зависимости от характера надмолекулярной структуры. Особенно ярко это проявляется у кристаллических полимеров. [c.132]

    В предыдущих главах были рассмотрены особенности строения наполненных полимеров и причины, определяющие различие свойств полимеров в поверхностных слоях и в объеме. В настоящей главе на основе развитых выше представлений будут рассмотрены основные механические и реологические свойства наполненных аморфных и кристаллических полимеров. Разумеется, что при этом мы будем останавливаться только на наиболее общих положениях, не анализируя специально литературу по свойствам наполненных композиций и армированных пластиков, так как это не входит в задачу данной монографии. [c.149]

    Следует отметить, что одии и тот же полимер в зависимости от воздействующих на иего различных факторов (механических нагрузок, температуры, типа растворителя и др ) может находиться в аморфном или кристаллическом состоянии, образовывать различные надмолекулярные структуры Особенности полимеров, влияющие иа свойства, отчетливо видиы при рассмотрении термомеханической кривой, показывающей зависимость величины деформации полимера от температуры при постоянной нагрузке (рис 14) В общем случае иа термомеханической кривой можно выделить три области, соответствующие стеклообразному, высокоэластическому и вязкотекучему состояниям [c.22]

    Наблюдан)щиеся особенности свойств кристаллических полимеров принято объяснять наличием в них аморфной фазы, хотя принципиально возможно, что эти особенности связаны с иным строением кристаллов высокополимерных веществ. Этот важный вопрос практически никогда не рассматривался и был обсужден лишь в последнее время [2—8]. Более того, при рассмотрении механических свойств кристаллических полимеров кристаллической фазе обычно отводится второстепенное место, так как считается, что кристаллические полимеры двухфазны, причем определяющей механические свойства является аморфная фаза, способная кристаллизоваться при деформации. Одна]<о совсем недавно [2—6, 9] высказана противоположная точка зрения, состоящая в том, что основную роль при деформации кристаллических полимеров играют кристаллы полимеров. Поэтому необходимо подвергнуть анализу накопившиеся фактические данные о кристаллах полимеров и установить, какая из этих точек зрения подтверждается опытом. Необходимо также выделить те теоретические и экспериментальные вопросы, разрешение которых позволит подойти к построению теории физических свойств кристаллических полимеров. [c.78]

    Из всех кристаллических полимеров фторопласт-4 обладает наиболее подходящими для указанной цели физико-химическими свойствами. Особенно ценным качеством его является практически абсолютная химическая стойкость. Материал не набухает ни в одной из жидкостей, хорошо поддается механической обработке в холодном состоянии, однако не является литьевым, так как не может быть переведен в вязкотекучее состояние. Фторопласты-4 (А, В, В) имеют одинаковые механические свойства и являются основными материалами для амортизаторов клапанных пластин. Для всех фторопластов-4 максимальная рабочая температура эксплуатации не должна превышать 260 °С. [c.237]

    Особенно интересны исследования механических свойств кристаллических полимеров. Еще в 1932 г. Карозерс [42] заметил, что при растяжении изотропного образца кристаллического полимера на нем при определенном значении силы возникает шейка, которая в процессе дальнейшего растяжения увеличивается за счет исходной более толстой части образца. Принципиальным отличием между изотропной исходной толстой частью образца и шейкой является то, что шейка резко анизотропна по многим физическим свойствам. [c.83]

    Таким образом, в работах Каргина и Соголовой было выдвинуто повое представление о связи механических свойств кристаллических полимеров с особенностями кристаллического состояния полимеров, а не с двухфазно-стью таких систем. [c.85]

    В четвертой главе подробно освещен термомеханический метод определения температуры стеклования и текучести полимеров, проанализированы особенности интерпретации термомеханических кривых для аморфных и кристаллических полимеров, приведен расчетный метод определения по химическому строению полимера величины механического сегмента. Рассмотрены две основные концепщш механизма процессов застекловьшания полимеров - релаксационная и межмолекулярная. Рассматривается более универсальный, чем широко распространенный групповой подход расчета свойств полимера по их химическому строению, атомистический подход, с использованием которого получены аналитические выражения для расчета по химическому строению температуры стеклования линейных и сетчатых полимеров. Выполнен анализ влияния типов разветвлений линейных полимеров, а для сетчатых полимеров - числа звеньев между узлами сшивки, типа и строения этих узлов, наличия и вида дефектов сетки на температуру стеклования полимеров. [c.15]

    Особенности поведения ориентированных образцов ИПП под нагрузкой в интервале от —30 до 50 °С и ПКА в условиях циклического нагружения рассмотрены в работах [139, 140], а поведение отожженных ориентированных образцов ПЭ — в работе [141]. Непосредственно установлено, что кинетическая гибкость полимерных цепей может изменяться не только в зависимости от температуры, но и в силу как бы механического стеклования аморфных областей полимера. Анализ этих данных показал, что торможение сегментального движения в напряженном состоянии следует объяснять уменьшением числа возможных конформаций цепей при растяжении, а не увеличением стерических межмолекулярных препятствий движению [142, 143]. Торможение молекулярного движения означает, что под нагрузкой полимер теряет эластические свойства — в момент разрыва материал ближе к твердому телу, чем в исходном состоянии. Таким образом, как ИК-спектроскопические, так и ЯМР-данные свидетельствуют о гош-гранс-иереходах, возникающих при упругом растяжении ориентированных аморфно-кристаллических полимеров. [c.145]

    Механические свойства полимеров, в том числе полиолефинов, изменяются в очень широких пределах. Если рассматривать свойства только при комнатной температуре, то они различны в зависимости от молекулярной массы, температуры стеклования и кристалличности полимера. Если проанализировать механические свойства кристаллических термопластов, линейных и сшитых эластомеров, то вполне очевидно, что каждая из этих групп полимеров имеет свои особенности. Свойства изделий из полимерных материалов отличаются от свойств исходных изотропных полимеров тем, что, как правило, свойства изделий неодинаковы в различных направлениях. Нити имеют наибольший модуль в направлении растяжения, пленки — в плоскости поверхности, что положение в значительной степени связано с ориентацией полимерных цепей. [c.241]

    На практике получение пленок связано помимо тепловых со значительными механическими воздействиями, определяющими форму надмолекулярных образований еще в растворе или расплаве. Значение этих структур чрезвычайно велико, особенно для кристаллических полимеров, в которых они играют роль зародышей кристаллизации. Этим объясняется разница в свойствах пленок, полученных различными методами. [c.23]

    Необходимо сразу же сказать, что в области изучения закона трения твердых стеклообразных полимеров нет единого мнения относительно вида зависимости силы или коэффициента трения от нагрузки, нет и четких значений коэффициента трения. По нашему мнению, это связано с двумя обстоятельствами во-первых, с использованием различных методов исследования (режимы нагружения, скорости скольжения, внешние условия и т. п.) во-вторых, с сильным различием между исходными физико-механическими характеристиками у исследуемых полимеров. Возьмем в качестве примера хорошо исследованный фторопласт-4. Это материал, степень кристалличности которого колеблется в зависимости от технологии изготовления от 0,45 до 0,80 [29]. Принимая во внимание, что температура плавления этого материала равна 327° С, а температура стеклования аморфной части около —120° С, можно ясно видеть, в каком широком интервале могут меняться физические свойства в исходном состоянии. Фторопласт-4 имеет различные модификации кристаллической фазы [30]. Весьма важным его свойством является холодное течение под действием постоянного напряжения. Широкий диапазон физико-механических свойств имеют и другие полимерные материалы (см. гл. 1). Вполне понятно, что без учета особенностей строения и физико-механических свойств полимеров трудно разобраться в конкретных закономерностях и природе трения. [c.68]

    Это в основном кристаллические полимеры, что и определяет практически важные особенности их физико-механических свойств. [c.132]

    Из приведенных данных следует, что коэффициенты диффузии газов в полимерах имеют значения порядка 10 — 10 см 1сек, а общее значение коэффициентов проницаемости изменяется в широких пределах в зависимости от природы полимера. Внимательное изучение данных табл. 33 показывает, что газопроницаемость определяется теми же структурными особенностями полимеров, которые определяют механические, электрические и другие их свойства, — это гибкость цепи, фазовое и физическое состояние полимеров, плотность упаковки цепей. Из табл. 33 видно, что наибольщей проницаемостью обладают аморфные полимеры с очень гибкими цепями, находящиеся в высокоэластическом состоянии. Кристаллические полимеры (гуттаперча, полиэтилен) обладают значительно меньщей газопроницаемостью. Очень малой газопроницаемостью обладают высокомолекулярные стеклообразные полимеры, имеющие жесткие цепи. По мере уменьщения гибкости цепи газопроницаемость закономерно уменьщается. [c.496]

    Малый размер кристаллических областей по сравнению с длиной цепи и особенности механических свойств закристаллизованных полимеров послужили основанием для создания так называемой мицеллярной теории кристаллических структур, согласно которой в кристалличе- ф ских областях объединяются упорядоченные участки макромолекул, разные части которых могут входить в состав различных кристаллических областей. Модель закристаллизованного полимера в соответствии с мицел-лярной теорией показана на рис. 5, а. [c.17]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    Кристаллические стереорегулярные полимеры, вырабатываемые из пропилена и других а-олефинов и но своим механическим свойствам занимающие промежуточное положение между полиэтиленом и полистиролом, найдут широкое применение в производстве формованных изделий. Стереорегулярные полимеры, вследствие их прозрачности и высокого сопротивления разрыву особенно пригодны для производства пленки. Вследствие высокого сопротивления разрыву и сравнительно низкой стоимости они представляют также ценное сырье для производства текстильных волокон. Волокна из кристаллического полипропилена но сопротивлению разрыву равноценны полиэтилен-терефталатным, прочность которых достигает 7 г/денъе. Единственным серьезным недостатком полипропиленового волокна является более низкая температура плавления по сравнению с другими волокнами одинаковой прочности как найлон и дакрон. [c.306]

    Безусловно, что в кратком обзоре невозможно охарактеризо- вать все классы неорганических материалов, однако нельзя не сказать о графитовых материалах, которые выделяются исключительно высокой теплопроводностью, превышающей теплопроводность многих металлов и сплавов. Это качество наряду с химической инертностью и термической стойкостью при резких перепадах температур, высокой электрической проводимостью и хорошими механическими свойствами сделали графит и материалы на его основе незаменимыми в различных областях техники и промышленности. В частности, в химической промышленности применение графита особенно эффективно для изготовления теплообменной аппаратуры, эксплуатируемой в агрессивных средах. На ее поверхности в значительно меньшей степени откладываются накипь и загрязнения, чем на поверхности всех других металлических и неметаллических материалов. Сырьем для получения искусственного графита служит нефтяной кокс, к которому добавляют каменноугольный пек, играющий роль вяжущего материала при формовании изделий из графитовой шихты. Сам цикл получения изделий включает измельчение и прокаливание сырья, смешение шихты, прессование, обжиг и графитизацию. Условия обжига тщательно подбирают, чтобы избежать появления механических напряжений и микротрещин. При графитизации обожженных изделий, проводимой при температуре 2800—3000 °С, происходит образование упорядоченной кристаллической структуры из первоначально аморфизованной массы. Чтобы изделиям из графита придать непроницаемость по отношению к газам, их пропитывают полимерами, чаще всего фенолформальдегидными, или кремнийор-ганическими смолами, или полимерами дивинилацетилена. Пропитанный графит химически стоек даже при повышенных температурах. На основе графита и фенолформальдегидных смол в настоящее время получают новые материалы, свойства которых существенно зависят от способа приготовления. Материалы, формируемые при повышенных давлениях и температурах, известны под названием графитопластов, а материалы, получаемые холодным литьем, названы графитолитами. Графитолит, например, применяют не только как конструкционный, но и как футеровочный материал. Он отверждается при температуре 10 °С в течение 10—15 мин, имеет высокую адгезию ко многим материалам, хорошо проводит теплоту и может эксплуатироваться вплоть до 140—150°С. В последнее время разработан метод закрытия пор графита путем отложения в них чистого углерода. Для этого графит обрабатывают углеводородными соединениями при высокой температуре. Образующийся твердый углерод уплотняет графит, а летучие продукты удаляются. Такой графит назван пироуглеродом. [c.153]

    Известно, что физические и механические свойства полимеров во многом определяются надмолекулярными структурами— кристаллитами, сферолитами и т. д.— и эти вопросы рассматриваются в обширной литературе и, в частности, в превосходной монографии Джейла [120]. Нас же будут интересовать лишь те особенности структуры кристаллических полимеров, которые можно интерпретировать на уровне взаимодействий атомов и молекул. Здесь можно выделить три проблемы складывание макромолекул, полиморфизм и переход в гало-кристаллическое состояние. [c.79]

    Кристаллические полимеры характеризуются некоторыми специфическими особенностями физико-механических свойств, присущими только им и отсутствующими у аморфных полимеров. Эти особенности необходимо учитывать при пра ктическом использовании таких материалов, чтобы избежать ошибок при расчетах прочности деталей из них. Иногда специфические свойства кристаллических полимеров дают возможность изготовлять из них материальг с повышенной прочностью, например — изготовлять пленки и нити с прочностью, превосходящей прочность многих металлов . [c.11]

    При полимеризации пропилена итальянским химиком Натта был получен еще более ценный материал — полипропилен. В настоящее время для полимеризации пропилена используют катализатор, представляющий комплекс триэтилалюминия с треххлористым титаном — (СНзСН2)зА1 Т1С1з. Применение такого катализатора позволяет получать полимер со стереупорядоченной структурой, так называемый изотактический полипропилен. Такой кристаллический полимер об.ладает особенно ценными физико-механическими свойствами (табл. 5). [c.241]

    Широкое использование полимерных материалов в технике в значительной степени обусловлено их ценньши механическими свойствами, изучение которых является предметом одного из разделов физики — механики полимеров. В данной книге приводятся лишь основные физико-химические закономерности, позволяющие понять особенности поведения. полимеров в различных физических и фазовых состояниях. Деформация полимеров в высокоэластическом и вязкотекучем состоянии была рассмотрена в главах VII и IX. Данная глава лосвящена шоведению стеклообразных и кристаллических полимеров при деформации. [c.218]

    Рассмотрим основные особенности фибриллярной структуры полимера, полученной в процессе холодной вытяжки. Структура такого рода представляет собой плотноупакованный агрегат фибриллярных элементов диаметром от нескольких единиц до десятков нанометров. Несмотря на их плотную упаковку, фибриллярные элементы имеют четко выраженные межфазные границы раздела, которые хорошо регистрируются электронно-микроскопически [46, 47] и с помощью рентгеноструктурного анализа [48]. Механические свойства ориентированного полимера во многом обусловлены существованием реальных физических границ раздела между фибриллами. По мнению Петер-лина, главное сопротивление деформации оказывают квазивяз-кие силы трения на высокоразвитых поверхностях сдвигающихся друг относительно друга фибрилл [49]. Не менее сильное влияние фибриллярная морфология оказывает и на прочностные свойства аморфных и кристаллических полимеров [50, 51]. В работе [46] обобщен обширный экспериментальный материал по изучению фибриллярной морфологии большого числа волокон на основе природных и синтетических полимеров, и показано, что практически любые ориентированные полимерные системы имеют фибриллярную структуру. Диаметр отдельных фибрилл в такой структуре изменяется от нескольких нанометров до десятков нанометров. [c.12]

    Описаны особенности окислительной деструкции кристаллических полимеров и эластомеров в нагруженном состоянии. Подробно рассмотрены надмолекулярные и конформационные эффекты в кинетике окисления ориентированных полиолефинов, а также вопросы их структурной стабилизации, долговечности и механизма разрушения в условиях интенсивного окисления. Показано, как изменяются структура и свойства полимеров под нагрузкой. Основное внимание уделено описанию закономерностей, наблюдаемых при одновременном воздействии на полимер механических напряжений и агрессивных сред. Дана классификация химических реакций полимеров по их чувствительности к растягиваюш,им и сжимающим нагрузкам. [c.254]

    Фторопласты по сравнению с другими кристаллическими полимерами кристаллизуются относительно медленно, особенно при температурах эксплуатации. Поэтому путем термообработки можно изменять их степень кристалличности и влиять таким образом на физкко-механические свойства изделий. [c.132]

    Возможность кристаллизации обусловливает некоторые отличительные особенности в поведении материала при формовании и последующей тепловой обработке. В расплавленном состоянии кристаллической фазы нет, отличия кристаллизующихся полимеров от некристалли-зующихся исчезают, если не считать пониженной вязкости первых. Способность кристаллизоваться объясняется линейным строением молекул, отсутствием боковых групп и другими факторами, определяющими также вязкость расплавов. Наиболее важные различия между этими двумя классами материалов проявляются в высокоэластическом состоянии, когда вследствие кристаллизации затрудняются высокоэластические деформации. Однако путем быстрого охлаждения расплава можно значительно снизить содержание закристаллизованных областей и таким образом получить изделие с другой надмолекулярной структурой и иными механическими свойствами, [c.108]


Смотреть страницы где упоминается термин Кристаллические полимеры и особенности их механических свойств: [c.3]    [c.491]    [c.491]    [c.131]    [c.292]    [c.328]    [c.188]    [c.185]   
Смотреть главы в:

Химия и физика полимеров -> Кристаллические полимеры и особенности их механических свойств




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимеро

Полимеры кристаллические, свойства

Полимеры механические свойства



© 2025 chem21.info Реклама на сайте