Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Принципы качественной теории молекулярных орбиталей

    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]


    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    В соответствии с изложенными выше принципами образования молекулярных орбиталей и теории валентных связей может быть представлена структура отдельных молекул и выяснена качественная картина образования связей. [c.10]


    Используя основные принципы теории молекулярных орбита-лей, можно вычислить с достаточной степенью точности относительные энергии орбиталей. На рис. 48 представлена диаграмма энергетических уровней для тритильной системы. В то время как для построения подобной диаграммы необходимы длительные расчеты, сопоставление спектров катиона, радикала и аниона со спектром похожего соединения, например бензола, может характеризовать качественные различия. [c.195]

    При зарождении квантовой химии, разумеется, такой иерархии не существовало, а первые идеи метода молекулярных орбиталей (Ф. Хунд, Р. Мэлликен, Дж. Лен-нард-Джонс) были глубоко качественными. Ч. Коулсон, рассматривая историю этого метода, упоминает качественные представления, возникшие еще до появления уравнения Шредингера в ходе изучения строения атомов в рамках так называемой старой квантовой теории Бора — Зом-мерфельда . Это понятие о квантовом числе электрона в атоме, о стационарном состоянии атома, принцип запрета Паули, предположение о сходстве состояний электронов в изоэлектроппых атомах и ионах и т. д. Теория молекулярных орбиталей также первоначально опиралась на такие представления. Принципы строения электронной оболочки молекулы выяснялись при помощи так называемых корреляционных диаграмм, в которых вводилась модель объединенного атома , т. е. гипотетического атома, который бы [c.102]

    Принцип ЖМКО первоначально был обоснован как качественная схема. Однако в настоящее время имеется ряд количественных подходов, наибольшее признание получила теория Клопмана, который сопоставил свойства взаимодействующих частиц со свойствами валентных орбиталей. Опираясь на метод возмущения молекулярных орбиталей, Клопман показал, что химические реакции можно разделить на два типа реакции, контролируемые зарядом, и орбитальноконтролируемые реакции. Для контролируемых зарядом реакций должна существовать достаточно большая разница в уровнях энергии между верхней заполненной орбиталью донора и низшей свободной молекулярной орбиталью акцептора. Клопману удалось рассчитать численные параметры, характеризующие способности к комплексообразованию катионов большинства металлов. [c.43]

    В учении о механизмах органических реакций квантовая химия шла, как правило, позади качественных представлений теории электронных смеш ений и теории резонанса. Однако в 1965 г. в эту область был сделан крупный вклад и со стороны квантовой химии. Это касается большой группы органических реакций, при которых переход от реагентов к конечным продуктам происходит непрерывно,, без предварительной диссоциации на ионы или радикалы. Для этих реакций Вудвордом и Хофманом (1965) было предложено общее-правило, которое можно применить для качественного суждения и прогнозирования самых различных реакций и которое в самом общем виде гласит Химическая реакция происходит тем легче,-чем в большей степени связывание сохраняется в ходе превращения [94, с. 191]. Конкретизируя этот принцип с помощью модели молекулярных орбиталей, можно сказать, что энергия активации реакций мала тогда, когда происходят непрерывные превращения связывающих занятых молекулярных орбиталей реагентов в такие же орбитали конечных продуктов. Если же, например, реакция протекает через возбужденное состояние системы реагентов или конечных продуктов, в котором фигурируют несБязывающие молекулярные орбдтали, то такой реакции должна отвечать высокая энергия активации, она может оказаться поэтому запрещенной (к числу таких реакций относится изомеризация призмана — ладенбургов-ского бензола — в бензол, хотя теплота образования первого примерно на 90 ккал выше) [94, с. 120]. Вопрос о разрешенности или запрещенности таких непрерывных реакций требует отдельного-рассмотрения для каждой конкретной реакции или группы реакций, а так ке для канедого элементарного акта реакции. [c.181]


Смотреть страницы где упоминается термин Принципы качественной теории молекулярных орбиталей: [c.548]    [c.548]    [c.251]    [c.251]    [c.181]   
Смотреть главы в:

Теория строения молекул -> Принципы качественной теории молекулярных орбиталей

Теория строения молекул 1997 -> Принципы качественной теории молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали орбитали

Орбиталь молекулярная

Теория молекулярных орбиталей



© 2025 chem21.info Реклама на сайте