Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение света дисперсными системами

    При прохождении света через дисперсные системы (аэрозоли, суспензии, эмульсии) происходит рассеяние или поглощение излучения частицами дисперсной фазы. Это явление положено в основу нефелометрии и турбидиметрии. [c.74]

    При прохождении света через дисперсную систему он может поглощаться, отражаться или рассеиваться частицами. Поглощение света — это явление избирательное. Одни вещества полностью поглощают свет, другие поглощают только лучи определенной части спектра. Поглощение света свойственно любым дисперсным системам. [c.186]


    В коллоидных и дисперсных системах интенсивность прошедшего через систему света уменьшается не только за счет поглощения, но и за счет рассеяния света частицами дисперсной фазы. Поэтому, применяя уравнение Ламберта — Беера к окрашенным коллоидам, кроме коэффициента светопоглощения, приходится учитывать еще коэффициент светорассеяния. Уравнение принимает вид  [c.44]

    Интенсивность / света, прошедп1его через какую-то однородную среду — жидкость или раствор, всегда меньше интенсивности падающего света /(,. Это объясняется явлением поглощения (абсорбции) света средой (см. гл. 15). Каждая среда в зависимости от своих физических и химических свойств избирательно поглощает определенную часть спектра падающего света. Установлено, что высокодисперсные золи также поглощают часть проходящего света и для них, как и для молекулярных растворов, справедлив закон Ламберта — Бера. Однако в дисперсных системах возможны отклонения от этого закона, так как интенсивность проходящего света уменьшается не только в результате его поглощения, но и за счет рассеяния света частицами дисперсной фазы. Вследствие этого для окрашенных коллоидов в уравнение Ламберта — Бера кроме коэффициента светопоглощения вводят коэффициент светорассеяния  [c.390]

    К отличительным особенностям дисперсных систем, в которых размер частиц дисперсной фазы значительно меньше длины волны видимого света или соизмерим с ней по порядку величины, относятся их характерные оптические свойства. Изучение особенностей прохождения света через различные системы позволяет определять в них наличие, концентрацию и анализировать строение частиц дисперсной фазы. Теория оптических свойств дисперсных систем представляет собой сложную и основательно разработанную область современной физики. Однако она не позволяет полностью описать все детали оптических свойств, особенно грубодисперсных и высококонцентрированных систем. В рамках данного курса будут рассмотрены физические основы наиболее характерного из оптических свойств — рассеяния света частицами с размером, значительно меньшим длины волны (рэлеев-ское рассеяние), и качественно описаны более сложные случаи рассеяния и поглощения света частицами большого размера, а также роль флуктуаций прн взаимодействии света с дисперсными системами. [c.159]

    При прохождении пучка света через дисперсные системы наблюдается рассеяние или поглощение света твердыми частицами. Это явление поломлено в основу нефелометрии и турбидиметрии. [c.270]

    Свет, проходящий через дисперсные системы, молсет поглощаться, отражаться или рассеиваться, в результате чего происходит его ослабление. В ряде случаев эти эффекты могут наблюдаться одновременно например, золи золота, гидроксида железа, графита поглощают и рассеивают проходящий свет. При поглощении света часть электромагнитной энергии падающего пучка света преобразуется в конечном итоге в теплоту. При отражении или рассеянии света проходящий свет ослабляется лишь в связи с тем, что часть электромагнитных лучей меняет свое исходное направление. [c.388]


    Окраска коллоидных растворов, как и других дисперсных систем, связана с явлениями рассеяния и поглощения света. Поглощение света имеет четко выраженный избирательный характер. Рассеяние света придает коллоиду красноватую окраску в проходящем свете и голубоватую в рассеянном. В целом окраска коллоидных растворов определяется результирующей наложения двух эффектов — рассеяния и поглощения света. С изменением степени дисперсности или формы частиц дисперсной фазы изменяется вклад обоих эффектов, что вызывает изменение окраски дисперсной системы. [c.396]

    В коллоидных растворах часть света теряется в результате как истинного поглощения, так и рэлеевского рассеяния, что должно учитываться при измерениях. Окраска коллоидных растворов вообще зависит от степени дисперсности. В высоко дисперсных системах с непроводящими частица- [c.202]

    При обсуждении рассеяния света принималось, что частицы дисперсных систем не поглощают свет. Однако многие коллоидные системы имеют определенную окраску, что указывает на поглоще ние ими света в соответствующей области спектра. Это значит (как известно из оптики), что золь кажется окращенным в цвет, дополнительный поглощенному. Например, поглощая синюю часть (435—480 нм) видимого спектра (400—760 нм), золь оказывается желтым, при поглощении синевато-зеленой части (490—500 нм) он имеет красный цвет и т. д. При совместном действии всего видимого спектра на глаз человека возникает ощущение белого цвета-Позтому если лучи всего видимого спектра проходят через прозрачное тело нли отражаются от непрозрачного, то прозрачное тело кажется бесцветным, а непрозрачное — белым. Если тело поглощает весь видимый спектр, оно кажется черным. [c.265]

    Исходя из вышеизложенного, можно уточнить понятие параметра порядка для нефтяной дисперсной системы. Очевидно, что он должен представлять комбинацию нескольких внутренних переменных системы, например плотности, вязкости, коэффициента поглощения или рассеяния излучения когерентных источников света или звука и связанных с этим диффузионных эффектов в инфраструктуре системы и т.н. [c.181]

    Турбидиметрический метод исследования основан на измерении интенсивности света, прошедшего через дисперс1чую систему. Интенсивность падающего светового потока ослабляется в результате его рассеяния дисперсной системой. Если принять рассеянный свет за фиктивно поглощенный, то можно получить простое соотношение, аналогичное закону Бугера — Ламберта — Бера для поглощения света молекулярными растворами. Ослабление интенсивности света (11 пропорционально интенсивности падающего света 1, проходящего через слой исследуемой системы толщиной йх  [c.301]

    Рассеяние света. Одним из основных преимуществ оптических методов определения размеров частиц является то, что взаимодействие излучения с частицами не меняет структуры системы, т. е. дисперсная с[1стема остается прежней (за исключением тех случаев, когда происходят фотохимические реакции). К числу наиболее перспективных относится метод фотокорреляционной спектроскопии [133, 134]. Причиной светорассеяния является наличие оптических неоднородностей в среде. Такие среды называют мутными. В основе теории рассеяния света в мутных средах лежат следующие предположения 1) размер частиц много меньше длины волны света (/ Д 0,1) 2) не происходит поглощения (раствор не окрашен) 3) форма частиц близка к сферической 4) концентрация частиц мала, так что не происходит интерференции пучков, рассеянных различными частица- [c.94]

    При прохождении света через дисперсные системы наблюдается рассеяние или поглощение света твердыми частицами. Это явление положено в основу нефелометрии и турбидиметрии. Интенсивность светового потока, рассеиваемого небольшими частицами взвеси, описывается [c.285]

    В коллоидных системах к этому добавляется еще эффект рассеяния света коллоидными частицами, наиболее значительный для лучей г риьигрй л.пинпй нплны. т. е. для синих и фиолетовых лучей. Этот фактор действует значительно слабее, чем избирательное поглощение колебаний с определенной длиной волны, однако влияние его все же заметно проявляется. Вследствие этого в отраженном (точнее говоря, в рассеянном) свете большинство бесцветных коллоидных растворов имеет синеватый оттенок, а в проходящем свете, соответственно, — оранжевый или красноватый, так как проходящий свет частично лишается синих и фиолетовых лучей. Если само вещество дисперсной фазы коллоида окрашено, то коллоидный раствор приобретает интенсивную окраску. Таковы, например, оранжевые золи сернистого мышьяка или темно-коричневые золи гидроокиси железа. При этом в некоторых случаях на цвет раствора оказывает влияние и степень дисперсности. Так, высокодисперсные золи золота окрашены в ярко-красный цвет при уменьшении степени дисперсности цвет их изменяется и становится темно-синим при коагуляции. [c.536]

    Прохождение света через дисперсную систему сопровождается такими явлениями, как преломление, поглощение, отражение и рассеяние. Преобладание какого-то из этих явлений зависит главным образом от соотношения между длиной волны падающего света и размером взвешенных частиц. В грубодисперсных системах размер частиц превышает длину волны видимой части спектра. Это способствует отражению света от поверхности частиц. В высокодисперсных золях частицы соизмеримы с длиной волны видимого света, в результате чего преобладает светорассеяние. [c.388]


    Среди дисперсных систем коллоидные растворы занимают промежуточное положение между суспензиями и истинными растворами диаметр распределенных частичек в жидкой фазе коллоидного раствора колеблется от 1 до 100 тр.. Коллоидные растворы могут быть получены двумя различными методами дисперсионным (уменьшением величины частиц более грубых дисперсных систем—суспензий) и конденсационным (увеличением величины частиц истинных растворов, обладающих молекулярной или ионной дисперсией вещества). Коллоидные растворы называются также золями. В отличие от истинных растворов коллоидные растворы являются оптически неоднородными системами, так как световые лучи в них подвергаются светорассеянию этим объясняется опалесценция коллоидных растворов (различные окраски в отраженном и проходящем свете), что служит отличительным признаком коллоидных систем. Так как величина частиц коллоидного раствора одного и того же вещества колеблется в широких пределах, то окраска этих растворов может быть различной. Ввиду исключительно высокой степени дисперсности вещества для коллоидных растворов характерны все явления, происходящие на поверхности раздела двух фаз, особенно процесс поглощения различных веществ на поверхности адсорбция). Одним из продуктов адсорбции из растворов могут быть молекулы растворителя, в частности воды. Коллоидные системы, в которых частички подвергаются поверхностной гидратации небольшим слоем молекул воды, называются гидрофобными (например, кол- лоидные металлы, сульфиды и др.). Гидрофильные коллоиды характеризуются тем, что, помимо поверхностной гидратации, их частицы связывают большое количество молекул воды внутренней. [c.226]

    Двулучепреломление может сочетаться с дихроизмом — избирательным поглощением одного из преломленных лучей. В таком случае дисперсная система с соориентированными частицами может служить эффективным поляризатором света. На этом основано действие поляризационных пленок, например, содержащих герапатит (йодосульфат хинина). [c.168]

    Формула (3), в общем, отвечает характеру поглощения света ко ллоидиьми системами. Однако коллоидные системъ , состоящие из металлических частиц, ведут себя более сложно. У этих систем окр Зска золя очень сильнО зависит от степени дисперсности, что очень хо1рошо видно. на золях зо юта. Здесь в окраске золя существенную роль играет абсорбция света, на долю же отраженного света приходится незначительная роль. [c.30]

    ПО отношению к целлюлозе. Например, лейкосоединения дибензантрона, его 16,17-диметоксипроизводного и изодибензантрона отличаются очень высокой субстантивностью. Следует напомнить, что длина волны и интенсивность максимума поглощения также повы-щаются в ряду бензол, нафталин, антрацен и т. д. Вероятно, что резонанс молекул, с которым связан характер поглощения света, также обусловливает субстантивность красителей, являющихся производными этих кольцевых систем. Вследствие электронного резонанса между молекулами большие плоские молекулы в растворе склонны к полимеризации, на что иногда указывает появление в спектре поглощения z-полосы. По мере увеличения размера циклической системы возрастает склонность ароматических соединений к образованию продуктов присоединения (например, с пикриновой кислотой). Большая поляризуемость сложных циклических систем увеличивает возможность взаимодействия между красителем и целлюлозой. Несмотря на высказанное предположение, что основным механизмом связывания молекул красителя и целлюлозы является образование водородных мостиков, в настоящее время несомненно, что даже в отсутствие таких связей для межмолекулярного притяжения целлюлозы и красителей, например лейкосоединений антрахиноновых кубовых красителей с конденсированными многоядерными ароматическими системами, достаточно дисперсных и электростатических сил, возникающих в результате постоянных диполей в молекуле целлюлозы и красителя. Однако в этом случае [c.1472]

    Щелевой метод. Иногда ддя измерения рефракции применяется третий метод, заключающийся в использовании двух щелей [1]. Он несколько бодее точен, чем метод Фильпота, но не дает такой точности, как метод шкалы. Б настоящее время метод шкалы применяется в тех случаях, когда нужны точные измерения градиента показателя преломления в системах, где растворитель и раствор прозрачны. Метод цилиндрической линзы применяется ддя измерения одной скорости седиментации, а метод поглощения света используется для анализа сильно поглощающих или сильно рассеивающих дисперсных фаз. [c.487]

    Ослабление светового потока, проходящего через слой пены, происходит в результате рассеяния света (в процессах отражения, преломления, интерференции и тифракциц на элементах пены), а также его поглощения раствором. В полиэдрическои пене поверхности раздела фаз относятся к трем четко выраженным и различающимся по оптическим свойствам структурным элементам пленкам, каналам Плато — Гиббса и узлам. Из этнх трех элементов достаточно широко цсследованы только оптические своиства отдельных свободных пленок (см. разд. 2.1.2), и мало изученными остаются оптические свойства пены как дисперсной системы в целом. [c.314]


Смотреть страницы где упоминается термин Поглощение света дисперсными системами: [c.62]    [c.106]    [c.197]    [c.198]    [c.260]    [c.44]    [c.180]    [c.316]    [c.220]   
Физическая и коллоидная химия (1988) -- [ c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные системы

Поглощение света дисперсными



© 2025 chem21.info Реклама на сайте