Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Постоянные диполи

    Индукционное взаимодействие молекул осуществляется за счет их индуцированных диполей. Допустим, что встречаются полярная и неполярная молекулы. Под действием полярной молекулы неполярная молекула деформируется и-в ней возникает (индуцируется) диполь. Индуцированный диполь притягивается к постоянному диполю полярной молекулы. Индуцированный диполь в свою очередь усиливает электрический момент диполя полярной молекулы. [c.90]


    При отсутствии постоянных диполей в обеих молекулах между ними, казалось бы, не должно возникать никаких сил притяжения. Однако известно, что, например, инертные газы, молекулы которых неполярны, при достаточном понижении температуры переходят в жидкое, а затем в твердое состояние. Отсюда следует, что между неполярными одноатомными молекулами все же действуют какие-то силы притяжения. [c.76]

    Свойства и реакции 2-аминоэтансульфокислоты и ее производных. Как отмечено выше, таурин обладает слабо выраженными кислотными свойствами. Определение константы ионизации дало различные величины, причем два более новых значения [170] составляют 1,8-10" и 5,77-10 . Водные растворы таурина имеют диэлектрическую постоянную выше, чем у воды, причем она увеличивается пропорционально концентрации раствора 171]. Аналогичное действие оказывают другие солеобразные соединения, в которых положительные и отрицательные ионы, присутствуя в одной молекуле (двухполярные ионы), создают постоянные диполи. В кислом растворе таурин чрезвычайно устойчив к действию окисляющих агентов. Он не вступает в реакцию с серной кислотой, кипящей азотной кислотой, царской водкой или сухим хлором [172]. Однако при сплавлении таурина с углекислым натрием и азотнокислым калием сера полностью превращается [c.134]

    Двухатомные молекулы, состоящие из одинаковых атомов, как О и N2, очевидно, не имеют постоянного диполя, и соответственно, у них нет инфракрасного спектра. [c.316]

    Вандерваальсовы силы в молекулярных твердых и жидких веществах обычно а) возрастают с увеличением размера атомов и молекул, б) являются главным образом отталкивательными, в) обусловливают высокие температуры плавленая и кипения, г) существуют только в системах с постоянными диполями. [c.592]

    Ориентационное взаимодействие. В случае двух полярных веществ имеет место ориентационное взаимодействие постоянных диполей. В этом случае вокруг молекул образуется электрическое поле и они стремятся ориентироваться друг относительно друга. Это приводит к их притяжению, в результате чего одно вещество растворяется в другом. Ориентационное взаимодействие молекул двух полярных веществ тем сильнее, чем больше значения их дн-польных моментов. Эти силы взаимодействия являются функцией температуры чем выше температура, тем сильнее тепловое движение молекул и тем труднее им взаимно ориентироваться. Ориентационное взаимодействие обратно пропорционально г (расстоянию между диполями), следовательно, это взаимодействие короткодействующее. , [c.43]


    На рис. 12 прямая I относится к веществу, в котором возможны только наведенные диполи прямая 2 — к веществу с постоянным диполем. Отрезок 08 соответствует значению А в (I, 142), а тангенс угла ф дает значение В. Зная А и В, можно по уравнениям (1, 143) рассчитать поляризуемость а и дипольный момент р-. По данному способу вычисляются дипольные моменты молекул газа. [c.56]

    Полярные молекулы при взаимодействии тоже могут подвергаться индуцированию и под влиянием их электростатических полей возникают дополнительные индуцированные диполи. Общее взаимодействие молекул в этом случае слагается из ориентационного и индуцированного эффектов. Например, постоянный диполь-иын момент у Н2О больше, чем у ЫНз, но молекула аммиака легче индуцируется, поэтому результирующий момент у нее выше, чем у молекулы воды, и комплексные аминосоединения [Me(NHз)J]"+ устойчивее, чем аквакомплексы (Ме(Н20)х] +. [c.9]

    Деформационная поляризация характерна для всех молекул. Полярные молекулы помимо деформационной поляризации испытывают во внешнем поле еще и ориентационную поляризацию, т. е. стремятся ориентировать свой постоянный диполь в направлении силовых линий поля. Этот эффект характеризуется ориентационной поляризуемостью ор- обратно пропорциональной абсолютной температуре  [c.87]

    Энергия индукционного взаимодействия, как и ориентационного, убывает пропорционально шестой степени расстояния, но индукционное взаимодействие не зависит от температуры, так как ориентация наведенного диполя не может быть произвольной, она определяется направлением постоянного диполя. Энергия / дд тем значительнее, чем выше поляризуемость неполярной молекулы и дипольный момент полярной молекулы. Индукционное взаимодействие наблюдается при образовании гидратов благородных газов, при растворении полярных веществ в неполярных жидкостях и существенно только для молекул со значительной поляризуемостью. К ним в первую очередь относятся молекулы с сопряженными связями. [c.133]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]

    Если первая - молекула имеет одновременно постоянные дипольный и квадрупольный моменты, то последний может также взаимодействовать с индуцированным дипольным моментом второй молекулы. Кроме того, квадрупольный момент первой молекулы также индуцирует дипольный момент во второй молекуле, и взаимодействие последнего с постоянным диполем уменьшается с расстоянием аналогично тому, как это происходит в случае взаимодействия постоянного квадруполя с диполем, индуцируемым диполем. Эти два взаимодействия вместе дают выражение [c.198]

    Взаимодействие индуцированных диполей приводит к взаимному притяжению молекул подобно действию постоянных диполей, но более слабому. Такое взаимодействие называется поляризационным или индукционным. Энергия индукционного взаимодействия возрастает с увеличением наведенного диполя, быстро падает с ростом расстояния между взаимодействующими молекулами, но от температуры не зависит, так как наведение диполей происходит при любом пространственном положении молекул. Дебай для энергии индукционного взаимодействия одинаковых молекул вывел уравнение [c.76]


    Ориентационные силы — силы электростатического взаимодействия между молекулами, обладающими постоянными диполями (или мультиполями). [c.14]

    Ориентационные силы (силы Кеезома), возникающие прн взаимодействии молекул, обладающих постоянными диполями. Такие молекулы стремятся к энергетически выгодной взаимной ориен гации. Ориентационные силы с повышением температуры уменьшаются, поэтому жидкие фазы, селективность которых при низких температурах зависит от ориентационных сил, становятся менее эффективными при высоких температурах. [c.170]

    Взаимодействие постоянных диполей, которые имеют большое значение в молекулах с большим дипольным моментом. Энергия взаимодействия двух диполей прямо пропорциональна произведению их дипольных моментов и обратно пропорциональна третьей степени расстояния между ними. Эта энергия ориентационного взаимодействия падает с повышением температуры. [c.157]

    Энергия индукционного взаимодействия убывает при увеличении расстояния между молекулами и пропорциональна шестой степени величины этого расстояния. Ориентация наведенного диполя не зависит от температуры системы, а определяется лишь направлением постоянного диполя. Индукционное взаимодействие неаддитивно в отношении понижения суммарной энергии системы. [c.95]

    Таким образом, молярная поляризация веществ с постоянными диполями складывается из двух членов, один из которых зависит, а другой не зависит от температуры. [c.100]

    Индукционное взаимодействие. В случае растворения двух,веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно заряженных частиц смещается по отношению к ядру на расстояние I, что проводит к возникновению индуцированного двпольного момента tи в молекулах неполярного вещества (рис. 1). Затем происходит ориентация полярных молекул и молекул, в которых индуцирован диполыный момент. Чем больше этот момент, тем сильнее взаимодействие молекул. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, т. е. от значения [c.43]

    Индукционные силы (силы Дебая) характерны для взаимодействия молекул вещества с постоянным диполем с молекулами другого вещества, не обладающими постоянным диполем. В этом случае у последних возникает наведенный диполь. Обычно энергия индукционного взаимодействия относительно мала, однако она, как правило, достаточна, чтобы обеспечить различие в растворимости, необходимое при хроматографическом разделении смеси вешеств. [c.170]

    Поляризация, или намагниченность (J), взвеси постоянных диполей [c.193]

    Поскольку в диэлектриках практически отсутствуют свободные ионы и слабо связанные с атомными ядрами электроны, способные перемещаться под влиянием электрического поля, постольку они не проводят постоянного тока. Для прохождения переменного тока переноса заряженных частиц не требуется — вполне достаточно небольших колебаний зарядов вблизи некоторого положения равновесия. Смещение электронов, атомных ядер, повороты постоянных диполей в диэлектрике под влиянием электрического поля по сути дела и представляют собой подобные колебания зарядов, которые создают так называемые токи смещения. [c.233]

    Индуцированная поляризация проявляется и для веществ с постоянным дипольным моментом. Для последних надо, однако, принять во внимание, что макроскопическая поляризация постоянных диполей зависит от температуры, так как из-за теплового движения диполи отклоняются от направления, заданного электрическим полем. Для среднего момента постоянных диполей справедливо следующее выражение  [c.100]

    Если поляризующее поле колеблется с высокой частотой, то из-за инерции постоянных диполей они не успевают следовать за колебаниями поляризующего поля. Поэтому постоянные диполи не оказывают никакого влияния на молярную рефракцию (свет представляет собой высокочастотное электромагнитное поле). При частотах 10 Гц (длина волны 10—100 см, т. е. область дециметровых волн) возбуждается также и ориентационная поляризация . Такое возбуждение зависит от внутреннего трения среды и в твердых телах вообще не наблюдается. Дипольные моменты молекул газа можно непосредственно определить из уравнения Дебая, измерив температурную зависимость диэлектрической проницаемости. Значения и и (г нахо- [c.100]

    Во всех расчетах не принимаются во внимание довольно значительные силы взаимодействия, возникающие из-за аффекта поляризации. Так, если нейтральную молекулу, не имеющую ио своей природе постоянного диполя,, поместить в электростатическое поле, у нее появляется наведенный дшюль Для изотропной молекулы с поляризуемостью а в однородном электрическом поле наведенный диполь будет противоположен по направлению Е и равен по величине — иЕ. Работа, которую необходимо затратить для [c.446]

    Взаимодействие между молекулами в чистых жидкостях является в основном ван-дер-ваальсовым взаимодействием. Под этим названием объединяются несколько типов межмолекулярного притяжения, являющихся частными случаями электростатического взаимодействия. К ним относятся ориентационное притяжение между молекулами с постоянным диполем, индукционное притяжение между молекулами с постоянным диполем и молекулами с наведенным диполем и дисперсионное притяжение между взаимо-иаведенными диполями молекул, момент которых колеблется около нуля. [c.163]

    Очевидно, что характер связей молекул компонентов, входящих в такие соединения, в разных случаях различен. Так. в комплексе тринитробензол—нафтиламин [СвНз(М02)з СюН,ЫН21 диполь группы N 2 индуцирует диполь в ароматическом ядре амина и оба диполя притягиваются (индукционное взаимодействие). В той же системе, по-видимому, имеется и ориентационное взаимодействие постоянных диполей нитро- и аминогруппы [СвНз(М02)я-ЫНа СюН,]. Прочность соединений таких типов, естественно, различна. [c.164]

    В работах И. С. Лаврова [24] показано, что действие электрического поля не только способствует электроосаждению частиц, а также играет большую роль в процессах гетерокоагуляции (прилипание отдельных частиц и их агрегатов к поверхности электрода) и адагуляции (прилипание частиц и агрегатов к стенкам сосуда). Отмечена агрегация частиц в межэлектродном пространстве, которую можно объяснить прежде всего их поляризационным взаимодействием. Направленная или ориентированная агрегация обязана проявлению также поляризационных и ориентационных сил при взаимодействии наведенных и постоянных диполей. [c.7]

    Ориентационное взаимодействие обусловливается наличием двух полярных молекул, причем с увеличением температуры энергия этого взаимодействия снижается. Взаимодействие двух молекул, одна из которых является постоянным диполем, а в другой диполь наводится первой, называется индукционным величина энергии индукционного взаимодействия не зависит от температуры. Дисперсионное взаимодействие наблюдается как между полярными, так и неполярными молекулами оно лызвано взаимным возмущением электронных орбиталей, в результате чего образуются два мгновенных диполя. Соотношение всех перечисленных видов взаимодействий зависит от степени полярности компонентов НДС. В системе слабополярных молекул основными являются силы дисперсионного взаимодействия, а с увеличением полярности возрастают силы ориентационного взаимодействия. [c.16]

    Последний член уравнения 1)—— характеризует ван-дер-ваальсовскос притяжение молекул, являющееся результатом действия ориентационных, индукционных и дисперсионных сил. Константа межмолекулярного притяжения Кб в общем случае включает три составляющие, описывающие соответственно взаимодействие двух постоянных диполей (ориентационное взаимодействие), диполя с неполярной молекулой (индукционное взаимодействие) и взаимодействие двух неполярных молекул [c.17]

    В то время как ин электронная ах, 1 Н атомная аа поляризуемость в первом приближении от температуры пе зависят, ориентационная поляризуемость ач, согласно теории Дебая [72], связана с постоянным диполь-Н лд[ моментом молекулы и и температурой Г (абсо.иютная шкала.) следу юищм соотношением  [c.393]

    В истинных растворах нефтяного происхождения взаимодействия между молекулами ослаблены. При этом соединения нефти характеризуются наличием только химических связей в самой молекуле. При определенных условиях, как уже было указано, стабильная молекула способна к физическим взаимодействиям с другими молекулами с образованием комбинаций молекулярных фрагментов — надмолекулярных структур. Формирование надмолекулярных структур является результатом сложных и разнообразных взаимодействий ван-дер-ваальсовых сил притяжения, радикальномолекулярных и химических взаимодействий. Наличие в молекулах жидкости постоянных диполей увеличивает межмолекулярные взаимодействия, может ограничить вращение молекул за счет направленного взаимодействия диполей с соседними моле- [c.50]

    Дальнодействие электрических сил взаимодействия ионов в кристаллах не проявляется при расстояниях К между частицами ДФ, значительно превышающих межионные, из-за практически полной взаимной нейтрализации электрических полей разноименно заряженных ионов. То же самое происходит в случае взаимодействия частиц твердой ДФ, составленных из полярных молекул с постоянными диполями полярные молекулы, положения которых в твердом теле жестко.фшссированы, обычно располагаются так, что их поля взаимно нейтрализуются. Лишь у молекул, находящихся на поверхности, электрические моменты остаются нескомпенсированными. К ориентационным и индукционным силам правило аддативности абсолютно неприменимо. Дисперсионные же силы неспецифичны, аффективны, не экранируются и для двух взаимодействующих частиц твердого тела могут быть найдены суммированием дисперсионных сил взаимодействия между всеми составляющими их молекулами [186]. [c.98]


Смотреть страницы где упоминается термин Постоянные диполи: [c.225]    [c.133]    [c.226]    [c.200]    [c.56]    [c.109]    [c.44]    [c.70]    [c.74]    [c.62]    [c.95]    [c.196]    [c.233]    [c.175]   
Ядерный магнитный резонанс в органической химии (1974) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие двух постоянных диполей

Взаимодействие ион постоянный диполь

Взаимодействие иона и постоянного диполя с индуцированным диполем (индукционное взаимодействие)

Взаимодействие межмолекулярное постоянный диполь—наведенный

Взаимодействие постоянный диполь индуцированный

Взаимодействие постоянный диполь — наведенный диполь

Двойной электрический слой с постоянным диполем

Диполи постоянные и наведенны

Диполь

Тетраизоамиламмоний азотнокислый, константа диссоциации, влияние диэлектрической постоянной для эллипсоидальной модели дипол

Частицы с постоянным диполем, строение двойного электрического слоя



© 2025 chem21.info Реклама на сайте