Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен в газо-жидкостных средах

    Большинство существующих промышленных процессов в химической и нефтехимической промышленности (реакторные процессы, массообменные и теплообменные процессы, процессы смешения газо-жидкостных и сыпучих сред и т. д.) — это процессы с низкими (малыми) параметрами (давлениями, скоростями, температурами, напряжениями, деформациями). В силу специфики целей и задач химической технологии здесь на передний план выступают процессы химической или физико-химической переработки массы. Поэтому при структурном упрощении обобщенных описаний, как правило, пренебрегают в первую очередь динамическими соотношениями (характеризующими силовое взаимодействие фаз и отдельных составляющих внутри фаз) или учитывают их косвенно при установлении полей скоростей фаз, концентрируя основное внимание на уравнениях баланса массы и тепловой энергии. Кроме того, в самих уравнениях баланса массы и энергии, наряду с чисто гидромеханическими эффектами (градиентами скоростей, эффектами сжимаемости, диффузии и т. п.), первостепенную роль играют [c.13]


    Классификация. Хим.-технол. процесс в целом - это сложная система, состоящая из единичных, связанных между собой элементов и взаимодействующая с окружающей средой. Элементами этой системы являются 5 групп процессов 1) механические - измельчение, грохочение, таблетирование, транспортирование твердых материалов, упаковка конечного продукта и др. 2) гидромеханические - перемещение жидкостей и газов по трубопроводам и аппаратам, пневматич. транспорт, гидравлич. классификация, туманоулавливание, фильтрование, флотация, центрифугирование, осаждение, перемешивание, псевдоожижение идр. скорость этих процессов определяется законами механики и гидродинамики 3) тепловые - испарение, конденсация, нафевание, охлаждение, выпаривание (см. также Теплообмен), скорость к-рых определяется законами теплопередачи 4) диффузионные или массообменные, связанные с переносом в-ва в разл. агрегатных состояниях из одной фазы в другую,- абсорбция газов, увлажнение газов и паров, адсорбция, дистилляция, ректификация, сушка, кристаллизация (см. также Кристаллизационные методы разделения смесей), сублимация, экстрагирование, жидкостная экстракция, ионный обмен, обратный осмос (см. также Мембранные процессы разделения), электродиализ и др. 5) химические. Все эти процессы рассматриваются как единичные или основные. [c.238]

    Теплообмен е газо-жидкостных средах [c.248]

    Теплообменники этого типа состоят из ряда последовательно соединенных звеньев (рис. 40). Каждое звено представляет собой две соосные трубы. Для удобства чистки и замены внутренние трубы обычно соединяют между собой калачами или коленами. Двухтрубные теплообменники, имеющие значительную поверхность нагрева, состоят из ряда секций, параллельно соединенных коллекторами. Если одним из теплоносителей является насыщенный пар, то его, как правило, направляют в межтрубное (кольцевое) пространство. Такие теплообменники часто применяют как жидкостные илн газо-жидкостные. Подбором диаметров внутренней и наружной труб можно обеспечить обеим рабочим средам, участвующим в теплообмене, необходимую скорость для достижения высокой интенсивности теплообмена. [c.139]

    Теплообмен и сопротивления при кольцевом режиме течения двухфазного двухкомпонентного. потока в трубах явились предметом теоретического исследования, выполненного Леви [59, 60]. Автор представил решения для трех режимов течения газо-жидкостного потока вязкостно-вязкостного, вязкостно-турбулентного и турбулентно-турбулентного. Полученные им критерии в основном не отличаются от установленных Мартинелли (69]. Однако в решение входят три дополнительных критерия, выражающие влияние физических свойств среды в боль-щинстве случаев этими критериями можно пренебречь. [c.125]


    Результаты исследований теплообмена при псевдоожижении газом не позволяют переносить их на теплообмен между частицами и капельной жидкостью вследствие различий гидродинамики этих систем и теплофизических свойств среды. Поэтому изучению теплоотдачи в жидкостных кипящих слоях должны быть посвящены специальные исследования. Слабая изученность этого важного вопроса объясняется отсутствием надежной методики исследования теплообмена для жидкостных систем, необходимостью применения аппаратуры для измерения и фиксации малых температурных перепадов в быстропротекающих тепловых процессах. [c.83]

    Развитие элементных теплообменников связано со стремлением к повышению скорости движения рабочих сред главным образом в межтрубном пространстве, без устройства в межтрубном пространстве сложных и неудобных в эксплуатации перегородок. Каждый из элементов представляет собой отдельный ход для рабочей среды, а сочетание нескольких элементов соответствует рациональной идее многоходового трубчатого теплообменного аппарата с максимальным приближением взаимного направления движения рабочих сред к наиболее выгодному случаю чистого противотока. Применение элементных теплообменников оказывается наиболее эффективным в качестве противоточных аппаратов для физически однородных сред, движущихся с приблизительно одинаковыми скоростями без изменения своего агрегатного состояния (например, газо-газовые или жидкостно-жидкостные теплообменники). Кроме того, элементные теплообменники с секциями малых диаметров предпочтительны при более высоких давлениях рабочих сред. [c.200]

    Уравнения энергии, массы и количества движения, выведенные в предыдущем разделе для теплообмена конвекцией, могут быть теперь использованы для анализа различных типов жидкостных и газовых теплообменников. Например, можно исследовать теплопередачу к трубе, помещенной в пространстве, заполненном хорошо перемешиваемой средой. Температура окружающей среды может быть постоянной или изменяться во времени, но при этом не изменяется вдоль оси трубы. Могут быть рассмотрены как жидкости, так и газы. Труба может обладать или не обладать тепловой емкостью. В более сложных случаях жидкость или труба, или жидкость и труба вместе могут обладать проводимостью в направлении оси трубы. Для толстостенных труб следует рассматривать градиент температуры в радиальном направлении для самой трубы. В некоторых случаях теплообмен может сопровождаться конденсацией пара или кипением жидкости. [c.217]

    Всю номенклатуру изделий химического машиностроения можно разделить на 16 основных групп [3, 8] 1) дробилки и мельницы для измельчения твердых исходных материалов 2) грохоты для сортировки и разделения твердых сыпучих материалов по их крупности 3) печи и сушилки для удаления влаги из твердых влажных материалов при атмосферном давлении или при вакууме 4) фильтры для разделения суспензий на твердую и жидкую фазы 5) центрифуги и сепараторы для разделения суспензий и жидкостных смесей 6) смесители для получения смесей твердых, сыпучих или пастообразных материалов 7) прессы, таблеточные машины и форматоры - вулканизаторы для переработки пластмасс и резиновых смесей 8) емкостные аппараты для накопления, хранения и перемещения жидкостей и газов 9) теплообменные аппараты, или теплообменники, для передачи тепла от одних сред (горячих теплоносителей) к другим (холодным теплоносителям) 10) выпарные аппараты для концентрирования растворов твердых веществ при температуре кипения путем частичного удаления растворителя в парообразном состоянии 11) массообменные аппараты для диффузионного переноса одного или нескольких компонентов бинарных и многокомпонентных смесей из одной фазы в другую 12) абсорбционные аппараты для процессов поглощения индивидуального газа, а также избирательного поглощения одного или нескольких компонентов газовой смеси жидким поглотителем 13) аппараты дистилляции й ректификации для разделения жидких смесей на чистые компоненты или фракции 14) холодильные машины для охлаждения жидкостей или газов (паров) до различных уровней ниже температуры окружающей среды  [c.36]

    При экстракции, проводимой по принципу противотока, движущей силой процесса массообмена является разность концентраций (аналогично при теплообмене движущей силой является разность температур). Так же как при теплообмене требуется возмохсно большая поверхность контакта (о теплообмене см. стр. 363 и сл,), при экстракции и абсорбции решающее значение имеет величина поверхности соприкосновения взаимодействующих сред. Отсюда ясно, что при проведении этих процессов надо стремиться к возхюжно более тесному соприкосновению твердого вещества и жидкости или газа и жидкости и тонкому распределению их друг в друге. Это может быть достигнуто применением насадки, перемешиванием, распылением (образование жидкостной завесы), а также образованием тонких пленок на вращающихся поверхностях 3 сепараторах (см. стр. 265). Колпачковые ректификационные колонны (стр. 127) являются идеальными устройствами для промывания газов жидкостями. Любой процесс ректификации в колонне основан на вымывай и и высококипящах компонентов конденсатом и получаемой флегмой по принципу противотока. Аналогичное значение имеет циркуляция при гидрогенизации и многих каталитических процессах, напри.мер в реакциях с участием ацетилена. При проведении реакций между твердыми веществами и жидкостями, как, например, при гидролизе древесины или при экстракции дубильной коры, нарезанной свеклы, лекарственного сырья и т. д., процесс ведут в одной колонне, заполненной твердым веществом, с послойным движением через него растворителя (принцип п е р к о л я ц и и) или в группе аппаратов с меняющейся последовательностью их включения (экстракционная, или диффузионная, батареи). [c.75]



Смотреть страницы где упоминается термин Теплообмен в газо-жидкостных средах: [c.89]    [c.127]    [c.154]   
Смотреть главы в:

Новый справочник химика и технолога Процессы и аппараты Ч1 -> Теплообмен в газо-жидкостных средах




ПОИСК





Смотрите так же термины и статьи:

Теплообмен газов со средой



© 2025 chem21.info Реклама на сайте