Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен движущая сила

    Перенос тепла, происходящий между телами с различной температурой, называется теплообменом. Движущей силой этого процесса является разность температур, причем тепло самопроизвольно переходит от более нагретого к менее нагретому тепу. Тела, участвующие в теплообмене, называются теплоносителями. [c.111]

    Общие сведения . Перенос энергии в форме тепла, который происходит между телами с различными температурами, называется теплообменом. Движущей силой любого процесса теплообмена является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно, согласно второму закону термодинамики, переходит от более нагретого тела к менее нагретому. Тела, участвующие в теплообмене, носят название теплоносителей. [c.28]


    Перенос энергии в форме тепла , происходящий между телами, имеющими различную температуру, называется теплообменом. Движущей силой любого процесса теплообмена является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. Теплообмен между телами представляет собой обмен энергией между молекулами, атомами и свободней электронами в результате теплообмена интенсивность движения частиц более нагретого тела снижается, а менее нагретого-г возрастает. [c.260]

    I. Гидравлические процессы связаны с перемещением жидких и газообразных материалов. К ним относятся перекачивание, транспортирование, хранение, дозирование. Гидравлические процессы являются также основой для проведения ряда других процессов и их интенсификации (теплообменных, массообменных и др.). Движущей силой гидравлических проце-сов является разность давлений. Скорость протекания процесса определяется законами гидродинамики. [c.13]

    Поскольку в системе, стремящейся к состоянию равновесия, мас-со- и теплообмен осуществляется через поверхность раздела фаз, чем больше поверхность контакта фаз и чем более активно обновляется эта поверхность, тем быстрее завершается переход системы в состояние равновесия. Чем в большей степени состояние сосуществующих фаз отклоняется от условий равновесия, тем больше скорость массо- и теплообменных процессов в системе. В связи с этим по мере приближения системы к состоянию равновесия при неизменной поверхности контакта фаз скорость массо- и теплообменных процессов будет уменьшаться вследствие уменьшения движущей силы, обусловливающей этот обмен. [c.51]

    Процесс переноса теплоты, происходяш ий между средами (телами), имеющими различную температуру, называется теплообменом. Движущей силой любого процесса теплообмена является разность температур между более нагретым и менее нагретым телами, при наличии которой тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. [c.31]

    Основы теплообмена рассматривались в гл. 9, где было показано, что скорость теплового потока зависит от относительной величины движущей силы и сил сопротивления процессу теплообмена. Основными уравнениями теплового расчета теплообменных аппаратов являются уравнения теплового баланса и теплообмена, решаемые совместно. При этом учитываются следующие три сопротивления сопротивления пограничного слоя потоков, обмениваю щихся теплом (сопротивление пленки ) и сопротивление твердой стенки, раз делающей эти потоки. Передача тепла в этом случае осуществляется одновре менно теплопроводностью и конвекцией. Скорость теплообмена между потоком и твердой стенкой принято характеризовать с помощью коэффициента теплоотдачи а. Для двух потоков, разделенных стенкой, уравнение теплообмена имеет вид  [c.155]


    В теплообмене изучают (см. гл. 7) различные схемы движения теплоносителей — противоточную (наибольшая движущая сила), прямоточную (наименьшая), сложные — перекрестный ток, смешанные токи и т. п. (промежуточные значения движущей силы). Все эти схемы подразумевают движение теплоносителей в режиме ИВ. Рассмотрим (рис. 8.6) формирование [c.613]

    Теплообмен движущегося сплошным потоком слоя зернистого материала через ограничивающую этот слой стенку. При осуществлении непрерывных процессов нагревания или охлаждения зернистых материалов эти материалы в большинстве случаев движутся сплош-пым потоком ио каналам, через стенки которых подводится или отводится тепло. Наибольшее практическое значение имеет случай охлаждения (или нагревания) зернистого материала, движущегося сплошным потоком по вертикальной трубе. Как показывают опыты, зернистый материал при движении по вертикальной трубе сплошным потоком под действием силы тяжести перемещается в основной своей массе подобно сплошному стержню. [c.156]

    Скорость циркуляции жидкости как одна из гидродинамических характеристик барботажного слоя пока еще не используется при расчетах пустотелых колонн. Но, очевидно, через нее можно выразить интенсивность перемешивания неоднородных жидких систем, теплоотдачу к теплообменным элементам, размещенным в колонне, и изменение движущей силы процессов массообмена. [c.56]

    Вопрос о средней движущей силе теплообменных процессов, т. е. о средней разности температур, был рассмотрен в главе [c.466]

    Так же как и при теплообмене, величина движущей силы массообменных процессов зависит от относительного направления движения фаз (противоток, прямоток и др.) Кроме того, на движущую силу больщое влияние оказывает гидродинамическая структура потоков. [c.24]

    В состоянии термодинамического равновесия средняя кинетическая энергия всех элементов среды при данной температуре является постоянной, хотя скорости отдельных частиц существенно различны. Естественно предположить, что чем дальше система находится от состояния термодинамического равновесия, тем в большей степени она к нему стремится иг тем интенсивнее протекают процессы теплообмена, поскольку движущей силой теплообменных процессов является разность потенциалов — температур. В зависимости от характера протекающих [c.23]

    Согласно второму закону термодинамики, движущей силой теплообменных процессов является разность потенциалов—температур. В рабочем пространстве печей устанавливается весьма сложное поле температур в пламени, на поверхности кладки, на поверхности нагрева. Изменение температур того или иного поля во времени [c.22]

    Все указанные выше основные процессы (гидродинамические, тепловые, массообменные и др.) могут протекать только под действием некоторой движущей силы, которая для гидромеханических процессов определяется разностью давлений, для теплообменных — разностью температур, для массообменных — разностью концентраций вещества и т. д. Выражения движущей силы для различных видов процессов будут рассмотрены в соответствующих главах курса. [c.17]

    Повышение интенсивности теплообмена в многоходовых теплообменниках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Это диктует выбор экономически целесообразной скорости, определяемой числом ходов теплообменника, которое обычно не превышает 5—6. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по сравнению с чисто противоточным движением участвующих в теплообмене сред. [c.329]

    В частном случае, когда линия равновесия является прямой (у — тх), средняя движущая сила определяется подобно тому, как она рассчитывается для теплообменных аппаратов (см. стр. 302), т. е. как средняя логарифмическая или средняя арифметическая величина из движущих сил массопередачи у концов аппарата. [c.412]

    Процессы, скорость протекания которых определяется скоростью подвода или отвода тепла, называют тепловыми осуществляются они в теплообменных аппаратах. Движущей силой теплообмена является разность температур. [c.430]

    Во многих случаях значения 0 и Н, оставаясь постоянными во времени, могут быть переменными по величине для различных участков основного размера А) аппарата. Например, в теплообменных аппаратах вдоль поверхности нагрева температуры теплообменивающихся потоков и их физические параметры являются переменными, в результате чего как разность температур между потоками (т. е. движущая сила 0), так и коэффициент теплопередачи К в общем случае будут переменными величинами. [c.13]

    Если по оси абсцисс откладывать расстояние от начального сечения аппарата до любого произвольного его сечения (или пропорциональную этому расстоянию величину — поверхность нагрева), а по оси ординат — температуры потоков в соответствующих сечениях, то теплообмен при прямотоке и противотоке можно изобразить графиками, показанными на рис. 1.2, из которых видно, что движущая сила процесса, т. е. разность температур 0 = Г — t между потоками в общем случае является переменной величиной. [c.17]


    В качестве примера подсчета средней движущей силы рассмотрим противоточный теплообмен (рис. 1.3). [c.19]

    Формула (1.28) нами была выведена в качестве примера для подсчета среднелогарифмической разности температур, т. е. средней движущей силы теплообменного процесса. Однако, если таким же образом вывести формулы для подсчета средней движущей силы ряда других процессов, вид формулы сохраняется. Поэтому формулу (1-28) надо рассматривать как общую формулу для подсчета среднелогарифмической движущей силы 0ср. различных процессов, которые могут осуществляться прямоточно или противоточно (теплообмен, массообмен, химическая обработка). - [c.23]

    ТЕПЛООБМЕН, передача энергии в форме теплоты от тела с большей т-рой телу с меньшей т-рой. Движущая сила процесса — разность т-р участвующих в Т. тел. Различают [c.563]

    Примечание. В формулах приняты следующие обозначения а— коэффициент температуропроводности, м-/ч -Х—коэффициент теплопроводности, Вт/Чм- С) ср-тепло-емкость газа при постоянном давлении, Дж/(кг °С) —средняя движущая сила теплопередачи, °С ДС—движущая спла массопередачи, выраженная в единицах концентрации (кг м , моль/м ) О—количество перенесенной массы, кг р — количество перенесенной теплоты, Дж Г—межфазная поверхность, эквивалентная поверхности теплообмена, м= т—время работы аппарата, с, ч р—плотность, кг/м" О—коэффициент молекулярной диффузии, м/с —общий коэффициент теплоцередачи, Вт/(м °С) а — частный коэффициент теплоотдачи, Вт/(м - С) гОр—линейная скорость потока, м/с I — характерный линейный размер, м —кинематический коэффициент вязкости газа, м с К—общий коэффициент массопередачи, кг/(м- ч) б—коэффициент массопередачи, м/ч [прп теплообмене—кг/(м ч)] —инерционно-вязкостный критерий (видоизмененный критерий Рейнольдса для газа). [c.90]

    Для проведения гомогенных процессов применяются все основные типы реакторов, рассмотренных в гл. П1. Устройство реакторов для проведения гомогенных процессов проще, чем устройство реакторов для гетерогенных процессов, ввиду легкости перемешивания. Все реальные аппараты занимают промежуточное положение между аппаратами идеального вытеснения и полного смешения. Движущая сила процесса в реальных реакторах меньше, чем в реакторах идеального вытеснения. Следовательно, в реакторах для гомогенных процессов перемешивание необходимо усиливать только до перехода процесса из диффузионной области в кинетическую, дальнейшее же усиление перемешивания снижает скорость процесса. В некоторых случаях бывает необходимо усиление перемешивания и в кинетической области, например, для устранения местных перегревов реакционной смеси, для усиления теплопередачи между реакционной смесью и теплообменными поверхностями и т. п. Конструкции реакторов зависят от характера среды (газ, жидкость), параметров процесса и свойств соединений, участвующих в реакциях. [c.145]

    Особенности процесса испарения воды с поверхности пленки затрудняют установление общего коэффициента теплопередачи аппарата и усложняют расчет. Если принять в качестве движущей силы тепло- и массообмена разность средних температур пленки воды и воздуха по влажному термометру, сопротивление сухому и влажному теплообмену можно выразить одной величиной и упростить расчет. [c.195]

    Потери за счет необратимости протекания процессов проявляются вследствие конечных разностей температур и концентраций при массо - и теплообмене, смешения неравновесных потоков, гидравлического сопротивления и так далее. Снижение внутренних потерь путем уменьшения термодинамической необратимости процессов связано с уменьшением их движущей силы, а, следовательно, с ухудшением их технологических показателей (снижение выхода полезного продукта при химической реакции, степени извлечения компонента при его выделении из смеси и тому подобное). Это противоречие является основой для термодинамической оптимизации, цель которой сводится к минимизации энергозатрат. Основу такой оптимизации составляет энергетический метод, поскольку он позволяет выразить в одинаковых единицах (через эксергию) энергетическую ценность потоков энергии и вещества и учесть не только их количество, но и качество . Под качеством потока понимается следующее [2]. Высокопотенциальное тепло в ходе любого процесса неизбежно превращается в низкопотенциальное , то [c.92]

    При экстракции, проводимой по принципу противотока, движущей силой процесса массообмена является разность концентраций (аналогично при теплообмене движущей силой является разность температур). Так же как при теплообмене требуется возмохсно большая поверхность контакта (о теплообмене см. стр. 363 и сл,), при экстракции и абсорбции решающее значение имеет величина поверхности соприкосновения взаимодействующих сред. Отсюда ясно, что при проведении этих процессов надо стремиться к возхюжно более тесному соприкосновению твердого вещества и жидкости или газа и жидкости и тонкому распределению их друг в друге. Это может быть достигнуто применением насадки, перемешиванием, распылением (образование жидкостной завесы), а также образованием тонких пленок на вращающихся поверхностях 3 сепараторах (см. стр. 265). Колпачковые ректификационные колонны (стр. 127) являются идеальными устройствами для промывания газов жидкостями. Любой процесс ректификации в колонне основан на вымывай и и высококипящах компонентов конденсатом и получаемой флегмой по принципу противотока. Аналогичное значение имеет циркуляция при гидрогенизации и многих каталитических процессах, напри.мер в реакциях с участием ацетилена. При проведении реакций между твердыми веществами и жидкостями, как, например, при гидролизе древесины или при экстракции дубильной коры, нарезанной свеклы, лекарственного сырья и т. д., процесс ведут в одной колонне, заполненной твердым веществом, с послойным движением через него растворителя (принцип п е р к о л я ц и и) или в группе аппаратов с меняющейся последовательностью их включения (экстракционная, или диффузионная, батареи). [c.75]

    Передача тепла в теплообменных аппаратах осуществляется от среды, имеющей более высокую температуру, к среде с более низкой температурой. Движущей силой при теплообмене является разность температур сред. Теплообмен осуществляется за счет конвекции, теплопроводности и теплоизлучения. В большинстве случаев срёды в теплообменных аппаратах не смешиваются между собой и отделены друг от друга листом (в спиральных и пластинчатых аппаратах и аппаратах с рубашкой) или стенкой труб (в кожухотрубчатых аппаратах), их движение осуществляется параллельно или противотоком по двум или более (при нескольких теплоносителях) пространствам аппарата. [c.341]

    В контактных аппаратах с неподвижным катализатором Нельзя применять водяные холодильники, так как вследствие весьма низкой теплопроводности пористых гранул ванадиевого катализатора [порядка 0,57 ккал м-град -ч) у теплообменных поверхностей происходит резкое-падение температуры ниже температуры зажигания катализатора. Кроме того, на холодных поверхностях теплообменных труб может конденсироваться серная кислота, что вызывает быструю их коррозию и порчу контактной массы, находящейся в зоне теплообменников. Эффективная теплопроводность кипящего с лоя достигает 15 ООО ккал/(д1 грй 9.ч) [181, а коэффициенты теплоотдачи столь велики [16, 19], что становится возможным применение водяных холодильников (см. главу IV). При этом не происходит конденсации серной кислоты на холодных поверхностях, омываемых кипящим слоем при снижении температуры до 390° С, т. е. ниже рабочих температур катализа [20]. Теплопередача от кипящего слоя к воде, протекающей в трубах водяного холодильника, происходит много интенсивнее, чем в газовых теплообменниках, которые устанавливают между слоями аппаратов с неподвижным катализатором коэффициент теплопередачи возрастает в среднем в 15 раз. Движущая сила процесса теплопередачи Ai (разность температур) также увеличивается примерно в 2 райа. Таким образом, площадь теплообмена Р, вычисляемая по формуле [c.144]

    Движущая сила тепло- и массообмена (А< и АС) в уравнениях (II.1)—(И.З) по аналогии с массопередачей (абсорбция, десорбция) определяется в зависимости от взалмного направления потоков жидкости и газа, а также от принятой гидродинамической модели перемешивания. Для пенных аппаратов, как и для других реакторов со взвешенным ( кипяш,им ) слоем, общепринятой служит схема движения потоков в виде перекрестного тока. Для перекрестного тока выведены многие теоретические зависимости, характеризующие гидродинамику пенного слоя, а также массо-и теплообмен в слое пены [178, 234, 235]. Для пенных аппаратов с переливами, т. е. при перекрестном направлении потоков на одной тарелке, движущую силу сухой теплопередачи можно определять по формуле Позина [222, 232—235]  [c.92]

    Первоначальные исследования теплопередачи при пенном режиме были осуществлены в Ленинградском технологическом институте имени Ленсовета [179, 195, 234]. Опыты проводили при низкой температуре охлаждаемого воздуха (ip 28 °С) и при полном насыщении его водяными парами на входе и выходе из аппарата. Этот прием использован с целью элиминировать влияние переноса теплоты при испарении воды или конденсации паров, поскольку основная задача работы — изучение пенных аппаратов и в первую очередь влияния гидродинамических парад1етров пенного режима на показатели теплопередачи в слое пепы — ш г . При определении величин А т и р по опытным данным движущую силу тепло- и массопередачи при теплообмене определяли по формулам для перекрестного тока жидкости и газа (П.8) и (11.12). [c.96]

    Поскольку массо- и теплообмеп при стремлении системы прийти к состоянию равновесия осуществляется через поверхность раздела фаз, то чем больше поверхность контакта между фазами, тем быстрее система приблизится к состоянию равновесия. Чем больше состояние сосуществующих фаз отличается от условий равновесия, тем с большей скоростью происходит массо- и теплообмен. В связи с этим в процессе приближения системы к состоянию равновесия скорость массо- и теплообмена при неизменной поверхности раздела фаз будет уменьшаться, так как уменьшается движущая сила, обусловливающая этот обмен. [c.47]

    При течении Уимических реакций энтальпия начальных продуктов не может вся перейти в работу или теплоту, так как в конечных продуктах реакции сумма энтальпий не равна нулю. Если градиент движущих сил (Т, и, к и т. д.) равен нулю, то и работа, совершающаяся в процессе, равна нулю, а система будет находиться в состоянии равновесия при Г,= Гз закончится теплообмен электрический заряд не осуществляет работы, если 7, = турбины не работают при спущенной плотине химическая реакция будет достигать равновесия, когда количество полученных конечных продуктов равно количеству разложившихся конечных продуктов на первоначальные за единицу времени. [c.147]

    Количественная оценка процессов, протекаюш,их в насадочной колонне, возможна по указанным причинам лишь полуэм-пнрическим путем с помош,ью теории подобия. Чилтон и Кольборн [121 ] ввели для насадочных колонн понятие числа единиц переноса /1д. Оно учитывает тот факт, что в насадочной колонне массо-и теплообмен в отличие от тарельчатой колонны протекают непрерывно в виде бесконечно малых элементарных ступеней разделения. Для теплопередачи движущей силой является разность температур, а для массопередачи — разность парциальных давлений и концентраций распределяемого вещества. Исходя из разности концентраций, соответствующей положению кривой равновесия и рабочей линии, определяют безразмерную величину [59]. [c.141]

    Если привести в соприкосновение жидкость и пар, то моьду ними будет происходить массо- и теплообмен, конечным результатом которого является состояние динамического равновесия,. характеризующееся равенством температуры фаз и числа молекул каждого компонента, переходящих из одной фазы в другую. В состоянии равновесия система имеет совершенно определенные параметры — температуру, давление и составы фаз. Измеиение любого из этих параметров вызывает отклонение от состояния равновесия. В результате этого возникает движущая сила, вызывающая изменение свойств системы в направлении, соответствующем равновесию при изменившихся условиях ее существования. Это хорошо известно из повседневной практики и проявляется,, в частности, на примере зависимости давления насыщенного Пара от температуры. Изменение температуры жидкости, находящейся в равновесии с паром, например ее нагревание, вызывает нарушение равновесия и появление движущей силы, обусловливающей увеличение числа молекул, переходящих из жидкости в пар, по сравнению с числом молекул, переходящих из пара в жидкость. Это будет продолжаться до тех пор, пока давление Пара не станет равно величине, отвечающей условиям равновесия. [c.53]

    При абсорбции под давлением насыщенный раствор дросселируют только после теплообменников (непосредственно перед регенератором), иначе при првышенной температуре начинается десорбция газов, ухудшающая теплопередачу при этом появляются газовые мешки, усиливается коррозия. в точках отрыва пузырьков газа. Насыщенный раствор должен направляться в теплообменники по трубному пространству снизу вверх в верхних точках теплообменников предусматриваются продувочные линии с направлением газа в регенератор или на сжигание. При соответствующем аппаратурном оформлении теплообменников (нержавеющая сталь, проведение процесса таким образом, чтобы не образовывались газовые мешки, например в вертикальных аппаратах) совмещение частичной десорбции с теплообменом приводит к положительному эффекту — увеличению движущей силы теплообмена и коэффициента теплопередачи. [c.172]


Смотреть страницы где упоминается термин Теплообмен движущая сила: [c.396]    [c.65]    [c.378]    [c.113]    [c.44]    [c.23]    [c.68]   
Основные процессы и аппараты химической технологии Кн.1 (1981) -- [ c.342 ]




ПОИСК





Смотрите так же термины и статьи:

Движущая сила



© 2025 chem21.info Реклама на сайте