Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен газов со средой

    Большинство существующих промышленных процессов в химической и нефтехимической промышленности (реакторные процессы, массообменные и теплообменные процессы, процессы смешения газо-жидкостных и сыпучих сред и т. д.) — это процессы с низкими (малыми) параметрами (давлениями, скоростями, температурами, напряжениями, деформациями). В силу специфики целей и задач химической технологии здесь на передний план выступают процессы химической или физико-химической переработки массы. Поэтому при структурном упрощении обобщенных описаний, как правило, пренебрегают в первую очередь динамическими соотношениями (характеризующими силовое взаимодействие фаз и отдельных составляющих внутри фаз) или учитывают их косвенно при установлении полей скоростей фаз, концентрируя основное внимание на уравнениях баланса массы и тепловой энергии. Кроме того, в самих уравнениях баланса массы и энергии, наряду с чисто гидромеханическими эффектами (градиентами скоростей, эффектами сжимаемости, диффузии и т. п.), первостепенную роль играют [c.13]


    По способу действия теплообменные аппараты подразделяют на поверхностные и аппараты смешения. К первой группе относятся теплообменные аппараты, в которых теплообменивающиеся среды разделены твердой стенкой. В теплообменниках смешения теплопередача происходит без разделяющей перегородки путем непосредственного контакта между теплообменивающимися средами. Примером может служить конденсатор смешения (скруббер), заполненный насадкой. Жидкость стекает сверху вниз, пары или газ двигаются противотоком к ней. На нефтеперерабатывающих заводах преимущественное применение получили поверхностные теплообменники. По конструктивному оформлению они делятся на змеевиковые, типа труба в трубе и кожухотрубчатые — с неподвижными трубными решетками, с и-образными трубками и с плавающей головкой. [c.254]

    В ректификационных колоннах происходит массо-и теплообмен между средами — газом и жидкостью. В зависимости от рабочего давления ректификационные колонны подразделяются на работающие под внутренним давлением работающие под небольшим избыточным внутренним давлением (атмосферные) вакуумные. На рис. ПО, а показано устройство ректификационной колонны диаметром 3,2 м и высотой 22,5 м. Колонна предназначена для переработки сернистых нефтей. Она изготовлена из двухслойной стали наружная часть — из углеродистой стали, внутренняя — из легированной. Горячая нефть вводится через штуцер 9, а оросительная среда — навстречу ей через штуцер S. При испарении нефти пары легких фракций поднимаются вверх по колонне и отводятся через определенные штуцера (например, газойль отводится через штуцер 7, лигроин — через штуцер 6). Тяжелые фракции (мазут) собираются в нижней части колонны. В верхней части колонны предусмотрены предохранительные клапаны для сброса давления при его повышении сверх заданной величины. [c.162]

    Внешние условия горения сводятся к диффузии газов и теплообмену со средой. [c.228]

    Но бесконечно медленный процесс это и есть квазистатический процесс, который, следовательно, и дает максимальную работу. По этой причине изучение предельных случаев практически весьма важно. В частности, таким путем удается правильно оценить коэффициенты полезного действия машин. Если система, претерпевающая изменение, возвращается в исходное состояние, то она совершает круговой, или циклический, процесс. Если же исходное и конечное состояния отличаются друг от друга, то процесс будет некруговым. Для характеристики простых систем обычно бывает достаточно указать небольшое число параметров, например давление, объем, температуру. Процесс, протекающий при постоянной температуре, называется изотермическим, прн постоянном давлении— изобарическим, при постоянном объеме—изохорическим. Если во время процесса система изолирована от внешней среды таким образом, что исключен теплообмен со средой, процесс будет адиабатическим. Такой процесс имеет место, например, при очень быстром сжатии газа, когда выделяющаяся в результате сжатия теплота не успевает перейти через стенки сосуда во внешнюю среду. [c.119]


    Для предупреждения подобных аварий все детали и узлы компрессорных установок, соприкасающиеся с агрессивной средой, необходимо изготавливать из коррозионностойких материалов или защищать от коррозии соответствующими покрытиями. Прежде всего должна быть защищена от коррозии аппаратура межступенчатых холодильников, в которых происходит конденсация из компримированных газов паров агрессивных веществ,, а также следует защищать поверхность труб теплообменных аппаратов со стороны охлаждающей воды при закрытой циркуляционной системе водоснабжения. [c.182]

    В теплообменной аппаратуре химических производств часто встречаются такие процессы передачи тепла, при которых среда не изменяет своего агрегатного состояния. Различного рода подогреватели, межступенчатые холодильники компрессорных машин могут служить примерами аппаратов, в которых происходит нагрев либо охлаждение газа или жидкости, не сопровождающиеся изменением агрегатного состояния теплоносителей. Обычно такой теплообмен сопровождается какой-либо формой движения теплоносителя, и его интенсивность, таким образом, определяется интенсивностями процессов конвекции и теплопроводности. Если движение теплоносителя происходит за счет перепада давления, создаваемого насосом, вентилятором, компрессором и тому подобными устройствами, то конвекцию принято называть вынужденной. Когда же движение возникает за счет массовых сил, вызванных, например, перепадом температур, то конвекция называется естественной. [c.98]

    Известен взрыв газо-паровоздушной смеси в теплообменном аппарате. В этом случае аппарат после гидравлического испытания был не полностью освобожден отводы. При понижении температуры окружающей среды вода в нем замерзла. Поскольку аппарат не был отглушен от системы, находящейся под давлением углеводородных газов, последующий отогрев замороженных участков привел к взрыву и пожару. [c.313]

    Выбор мешалок и их характеристика. Аппараты с перемешивающими устройствами применяют для самых различных процессов. Однако, несмотря на разнообразие технологических целей, для которых применяется перемешивание, большинство из них сводится к улучшению тепло- и массообмена, получению равномерных смесей нескольких жидкостей, жидкости и твердого тела, жидкости и газа. Основная задача перемешивания — равномерное распределение вещества или температуры в перемешиваемом объеме. Иногда перемешивание служит для эмульгирования одной жидкости в другой или диспергирования твердой фазы, а иногда для создания высоких скоростей среды около теплообменных поверхностей с целью интенсификации теплообмена. [c.226]

    Среды, используемые для подвода или отвода тепла, называются соответственно теплоносителями и хладоагентами. В качестве теплоносителей могут быть применены нагретые газообразные, жидкие или твердые вещества. Дымовые газы как греющий теплоноситель обычно применяют непосредственно на установках, где сжигается топливо, так как их транспортирование на дальние расстояния затруднительно. Горячий воздух как теплоноситель также применяется для многих нефтехимических процессов. Существенным недостатком обогрева дымовыми газами и горячим воздухом является громоздкость теплообменной аппаратуры из-за свойственного им сравнительно низкого коэффициента теплопередачи. [c.253]

    В межтрубных пространствах теплообменных аппаратов всех типов перед отверстиями подводящих среду штуцеров предусматривают круглые козырьки-отражатели (см. рис. 17.4, е) из листа диаметром Вл > Ву (где Ву — диаметр штуцера) на расстоянии около 0,2 В у от отверстия для предотвращения повреждения прилегающих труб от механического воздействия на них поступающего потока жидкости или газа и эрозии. Проходное сечение в штуцерах распределительных камер не должно превышать проходное сечение труб одного хода. [c.363]

    Другим важным параметром при расчете на прочность узлов и деталей является их температура. При температуре среды в аппарате ниже 250 С расчетная температура стенки и деталей принимается равной максимально возможной при эксплуатации температуре среды. В случае обогрева открытым пламенем или горячими газами при температуре выше 250 °С расчетную температуру стенки и внутренних деталей принимают равной температуре среды, увеличенной на 50 °С. Для аппаратов с изоляцией температуру стенки принимают равной температуре на границе с изоляционным слоем (определенной теплотехническим расчетом), увеличенной на 20 °С. Для аппаратов, в которых осуществляется теплообмен, средняя расчетная температура стенок, труб, пластин и других деталей определяется теплотехническим расчетом. [c.76]

    Сложность заключается еще и в том, что на процесс горения серы оказывает существенное влияние печная среда, состоящая из серы, кислорода, азота, паров воды, обжиговых газов. Движение газового потока в печи осложняется теплообменными н физико-химическими явлениями из-за наличия в системе источников газообразования и тепловыделения. Таким образом, в печи создаются сложные поля скоростей, концентраций газов и температур. Эти поля трудно поддаются точному математическому описанию. [c.38]

    Теплообмен в рабочей камере футеровки дуговых электропечей осуществляется между всеми элементами термической системы материал—среда—футеровка . Теплота передается по всем перечисленным выше механизмам теплообмена. Тепловым излучением передается теплота от главного источника — столба горящей дуги, который представляет собой ионизированный газ печной среды, а также расплав шлака, т. е. жидкой фазы среды. В конвективном теплообмене участвует н газовая печная среда, образовавшаяся в зоне горения дуг и состоящая из паров металла, и твердая фаза (шлак, графит), и жидкая среда. [c.61]


    ППП проектирования теплообменной аппаратуры обеспечивает расчет и выбор стандартных теплообменников кожухотрубчатых, атмосферно-воздушного охлаждения, труба в трубе , пластинчатых для нагрева (охлаждения) однофазных сред, конденсации и испарения одно- и многокомпонентных смесей в присутствии водяного пара и инертных газов, что составляло 85% всех расчетов стандартного оборудования по конструкции и 70% по процессам. [c.566]

    Отходяш,ие газы содержат 80—85% оксида углерода, 8— 10% азота, 2—3% воды, а также -водород, фосфин, диоксид углерода, фосфор. Теплота сгорания газов около 11 МДж/м Наиболее приемлемым решением проблемы использования тепла отходящих газов является их применение в качестве топлива для технологических аппаратов или для выработки пара. Одно из условий использования тепла отходящих газов — создание специального теплообменного оборудования, устойчивого в агрессивной среде. [c.226]

    Следующим фактором, влияющим на теплообмен в радиационной секции, является излучение газовой среды, 8г.с. Радиационная секция трубчатых нечей обычно частично заполнена пламенем, которое образует поток газов, несущих раскаленные частички твердого вещества. Эти частички получаются в результате теплового разложения газообразных углеводородов вследствие их недостаточного смешения с воздухом перед нагревом и состоят из сажистого углерода. Их первоначальный размер находится в пределах от 0,006 до 0,061.1. Пламя при сгорании тяжелых жидких [c.65]

    Общепринятым и наиболее характерным признаком для классификации теплообменных аппаратов является их назначение нагрев, охлаждение, конденсация, испарение жидкостей, газов или нх смесей. При более подробной классификации учитываются также способ передачи тепла от одной среды к другой, конструктивные особенности аппаратов и пр. В зависимости от способа передачи теплоты теплообменники делятся на аппараты смешения, в которых процесс обмена происходит при непосредственном контакте сред, и на поверхностные аппараты, в которых передача осуществляется с использованием тепловоспринимающих и теплоотдающих поверхностей. [c.342]

    Для теплообменников жидкость—газ и в других случаях, когда в кольцевом пространстве проходит чистая среда с низким коэффициентом теплоотдачи, теплообменники могут выполняться с ребристыми теплообменными трубами, что позволяет в 2—3 раза уменьшить необходимое количество элементов. Кроме [c.358]

    Когда происходит теплообмен между однофазными потокаш (неиснаряющиеся жидкости или неконденсирующиеся газы), отступление от этого принцппа, ради удобства трубной обвязки теплообменника, почти не сказывается на эффективности теплопередачи, так как среды физически однородны и влияние конвекции на тенло-съем незначительно. Если же теплообмен связан с исиарением или конденсацией, как это имеет место на установках гидроочпстки, принцип направленной конвекции должен соблюдаться обязательно. В противном случае силы естественной конвекции будут направлены против движения потока (рис. 19). Из-за резкого различия физи- [c.86]

    В рекуператорах, применяемых для подогрева воздуха или горючих газов за счет тепла продуктов горения, уходящих из рабочего пространства печи, передача тепла происходит через стенку, разделяющую проходящие через рекуператоры потоки теплообмени-вающихся сред. Подогрев воздуха или газа в рекуператорах позволяет сократить расход топлива в печи, а также повысить температуру горения топлива. Рекуператоры делятся на керамические и металлические. [c.369]

    Часто неудовлетворительная конструкция аппарата получается в тех случаях, когда необходимо осуществить теплообмен мteждy технологическим потоком, имеющим большой расход, но малое изменение температуры, и потоком, имеющим малый расход, но большой диапазон изменения температуры. Примером такого аппарата может служить высокотемпературный конденсатор, охлаждаемый водой. В таких условиях наряду с различными схемами тока теплоносителей полезно рассмотреть вопрос о замене охлаждающей среды, например вопрос о целесообразности использования воздушного охлаждения, вместо водяного. , -Задача выбора рациональных скоростей теплоносителей может быть обоснованно решена только путем проведения оптимального расчета, на основе сравнения большого количества конкурирующих вариантов. Пределы скоростей, приведенные выше, имеют сугубо ориентировочный характер. Увеличение скоростей потоков лимитируется, как правило, повышением гидравлических сопротивл е-ний, поэтому верхний предел скорости ограничен располагаемым снижением давления. В конвективных теплообменниках следует наилучшим образом разрешить компромисс между величиной гидравлического сопротивления и коэффициентом теплоотдачи. Например, коэффициент теплоотдачи от жидкости или газа, текущих в межтрубном пространстве, пропорционален скорости потока в степени 0,6. Гидравлическое сопротивление пропорционально квадрату скорости. Отсюда следует, что чем выше доиуекаемое гидравлическое сопротивление, тем более высокого значения, коэфг фициента теплоотдачи можно достичь. Следует, однако, иметь в виду, что коэффициент теплоотдачи от данного потока может весьма слабо влиять на значение общего коэффициента теплопередачи (не быть лимитирующим).  [c.339]

    Теплообменные аппараты, в которых одной из теплообмени-вающихся сред является жидкость, протекающая по изогнутому каналу, широко распространены в технике. Область значений критерия Яе, которые имеют место в таких потоках, очень широка от 102—103 при движении вязких жидкостей при умеренных температурах до 10 и выше при движении газов в спиральных теплообменниках. [c.255]

    На величины К1, Ки оказывают влияние скорость потока газов, разность температур теплообмени-вающихся сред, толщина пленки воды в зоне контакта, плотность орошения водой контактной камеры, состав продуктов сгорания, их начальная влажность и т. д. Учесть все факторы, влияющие на значение К, в каждой зоне практически невозможно. Поэтому для расчетов пользуются общим значением К для контактной камеры в целом. В связи с трудностью чисто теоретического вычисления коэффициента теплопередачи в настоящее время пользуются эмпирическими зависимостями. К числу таких зависимостей в первую очередь следует отнести два критериальных уравнения Н. М. Жаворонкова  [c.38]

    Если система, претерпевающая изменение, возвращается в исходное состояние, то она совершает круговой, или циклический, процесс. Если же исходное и конечное состояния отличаются друг от друга, то процесс будет некруговым. Для характеристики простых систем обычно бывает достаточно указать небольшое число параметров, например давление, объем, температуру. Процесс, протекающий при постоянной температуре, называется изотермическим, при постоянном давлении — изобарическим, при постоянном объеме — изохори-ческим. Если во время процесса система изолирована от внешней среды таким образом, что исключен теплообмен со средой, процесс будет адиабатическим. Такой процесс осуществляется, например при очень быстром сжатии газа, когда выделяющаяся в результате сжатия теплота не успевает перейти через стенки сосуда во внешнюю среду. [c.10]

    Другой важный вывод, вытекающий из опытов с газом, сводится к утверждению, что в обратимом процессе работа расширения газа наибольшая. В предельно необратимом процессе она равна нулю (расширение газа в пустоту), а в частично необратимом процессе работа может иметь любое промежуточное значение. Правда, получение максимальной работы связано с бесконечно медленным процессом и едва ли кажется практически привлекательным, но указанный предел необходимо знать для производства различных технических расчетов н поэтому польза от таких предельных оценок несомненна. Если система, претерпевающая изменение, возвращается в исходное состояние, то она совершает круговой, или циклический, процесс. Если же исходное и конечное состояния отличаются друг от друга, то процесс будет некруговым. Для характеристики простых систем обычно бывает достаточно указать небольшое число параметров, например давление, объем, температуру. Процесс, протекающий при постоянной температуре, называется изотермическим, при постоянном давлении — изобарическим, при постоянном объеме — изохориче-скнм. Если во время процесса система изолирована от внешней среды таким образом, что исключен теплообмен со средой, процесс будет адиабатическим. Такой процесс осуществляется, например, при очень быстром сжатии газа, когда выделяющаяся в результате сжатия теплота не успевает перейти через стенки сосу- да во внешнюю среду (см. ниже). [c.13]

    I выпускают наружу, причем следует удалить из входной трубки весь оставшийся в ней горючий газ. Реакционный период считают законченным после того, как температура калориметра начнет линейно изменяться со временем. В отсчеты температуры вводят поправки на теплоту перемешивания и теплообмен со средой, как это было ранее описано. Прибор легко приспособить для сжигания жидкостей, имеющих достаточно высокую упругость пара. Для этого инертный газ (гелий иди воздух) насыщают парами вещества при температуре, которая лежит несколько ниже температуры калориметра. Приходится вносить три довольно существенные поправки, которых нет в опытах с калориметрической бомбой. Небольшая доля наблюдаемого теплового эффекта вносится зажигающей искрой соответствующая поправка определяется контрольными опытами. Поправка на газ становится необходимой, если температуры калориметра и входящих газов не равны друг другу. Эту поправку можно вычислить из теплоемкостей газов, причем объемы их измеряются реометрами. Вносится также поправка на испарение , учитывающая, что часть получающейся при сжигании воды уходит из реакционного сосуда в виде пара. Количество испарившейся воды определяют путем поглощения дегидритом и фосфорным ангидридом. Количество прореагировавшего вещества лучше всего определять взвешиванием образовавшейся двуокиси углерода после поглощения ее едким натром, нанесенным на асбест. Конечно, необходимо установить, что при условиях опыта вещество сгорает полностью. Заключение об этом можно сделать путем тщательного сравнения весовых количеств, получившихся при реакции двуокиси углерода и воды, а также сделав качественную пробу на присутствие окиси углерода в газах, не поглощенных поглотителями. Определение теплового значения калориметра проводится электрической градуировкой или сжиганием какого-нибудь хорошо известного вещества, например водорода. Постоянная термохимическая комиссия рекомендует для градуирования такого калориметра по.1ьзо-ваться реакцией горения водорода в кислороде тепювой эффект этой реакции определен с большой точностью .  [c.139]

    Ребристые трубы находят широкое применение при изготовлении теплообменной аппаратуры. При использовании ребристых элементов труб успешно решается большинство проблем, связанных с нагревом, охлаждением и конденсацией сред. Применение ребристых и ошипованных элементов труб экономически целесообразно в таких теплообменных аппаратах, в которых условия теплообмена с одним теплоносителем существенно хуже, чем с другим. В этих случаях, увеличивая поверхность труб со стороны оребрения или ошипования, удается компенсировать низкий коэффициент теплоотдачи ео стороны газа и, следовательно, интенсифицировать процесс теплообмена, уменьшить вес, габариты и стоимость теплообменной аппаратуры, а также эксплуатационные расходы. [c.151]

    Новые типы теплообменных и выпарных аппаратов. Созданы кожухструбчатые теплообменники с иродольнооребренными тру-ба.ми. Такие теплообменники обеспечивают высокую тепловую эффективность при различных по физическим свойствам рабочих средах газ — жидкость, газ — нар и др. [c.41]

    Теплообмен в реакторном блоке осуществляется при наличии двухфазной среды (жидкость — пары, газ), агрессивных компонентов (сероводород, водород), относительно высоких температур и дарлений I = 300—400 °С, Р = 3,0—5,0 МПа). В этих условиях следует учитывать конструкцию аппарата зависимость степени испарения (конденсации жидкой фазы в двухфазной смеси) от температуры обвяЁку теплообменников трубопроводами оптимальные скорости потоков в трубном и межтрубном пространствах теплообменника. [c.84]

    При выводе указанного уравнения предполагалось, что коэффициенты пористости и проницаемости не изменяются с давлением, i. e. пласт недеформируем, вязкость газа также не зависит от давления, гяз совершенный. Принимается также, что фильтрация газа в пласте происходит по изотермическому закону, т.е. температура газа и пласта остается неизменной по времени. Впоследствии один из учеников Л.С. Лейбензона-Б. Б. Лапук в работах, посвященных теоретическим основам разработки месторождений природных газов, показал, что неустановившуюся фильтрацию газа можно приближенно рассматривать как изотермическую, так как изменения температуры газа, возникающие при изменении давления, в значительной мере компенсируются теплообменом со скелетом пористой среды, поверхность контакта газа с которой огромна. Однако при рассмотрении фильтрации газа в призабойной зоне неизотермичность процесса фильтрации сказывается существенно вследствие локализации основного перепада давления вблизи стенки скважины. Кстати, на этом эффекте основано использование глубинных термограмм действующих скважин для уточнения профиля притока газа по толщине пласта (глубинная дебитометрия). При рассмотрении процесса фильтрации в пласте в целом этими локальными эффектами допустимо пренебрегать. [c.181]

    На различных химических и нефтехимических производствах применяют одинаковые механические, физико-химические и другие процессы, которые имеют подобное аппаратурное оформление и поэтому могут быть оснащены унифицированными наиболее эффективными средствами техники безопаоности и противоаварийной защиты, независимо от того, в состав какого производства они входят. К наиболее распространенным из таких процессов относятся абсорбция и десорбция газов, теплообмен, ректификация и дистилляция, центрифугирование взрывоопасных сред, компримирование и транспортирование по трубопроводам взрывоопасных и токсичных газов, осушка твердых материалов, смешение горючих газов с газами-окислителями, транспортировка сжиженных газов и ЛВЖ, пневмотранспорт пылеобразующих материалов и др. [c.11]

    Схема № 3. Компрессорную перекачку с предварительным охлаждением (рис. 102) применяют для дальнего транспортирования. Необходимость выбора такой схемы обусловлена тем. что несмотря на высокое давление подаваемого от источника углекислого газа обычная беском-прессорная или компрессорная перекачка здесь неприемлема, так как указанные схемы приводят к конденсации углекислого газа в трубопроводе и формированию двухфазной смеси. Согласно предлагаемой схеме, двуокись углерода вначале сжимается в компрессорах (линии 1,1 ) и переводится в новое термодинамическое состояние —в область сверхкритической температуры и давления, т. е. в область, где i>tкp и р>ркр. Затем проводят изобарическое охлаждение и конденсацию транспортируемой среды в теплообменном аппарате (линии 2,2 ) в результате чего температура двуокиси углерода становится ниже критической температуры, и сама углекислота переходит в жидкое состояние. В качестве теплообменного аппарата может быть использован либо аппарат воздушного охлаждения, либо теплообменник специальной холодильной установки. Аппарат воздушного охлаждения применим лишь в условиях, если температура окружающего воздуха не превышает 20—25 °С. Только при этом может быть обеспечен перевод охлаждаемой среды в область tаппаратами воздушного охлаждения может быть рекомендована за редким исключением в большинстве районов. [c.170]

    При открытии предохранительного клапана происходит расширение газа в пневмокомпенсаторе. Этот процесс настолько быстрый, что теплообмен с внешней средой практически отсутствует. Конечная температура газа [c.159]

    Поскольку в центробежных и осевых компрессорах искусственное охлаждение газа в процессе сжатия применяют редко, а естественный теплообмен с внешней средой (путем лучеиспускания, конвекции и теплопроводности) сравнительно невелик, то процесс сжатия газа в ступени и в одном корпусе компрессора считают внешнеадиабатическим = 0). Тогда [c.197]


Смотреть страницы где упоминается термин Теплообмен газов со средой: [c.154]    [c.233]    [c.154]    [c.160]    [c.139]    [c.96]    [c.178]    [c.43]    [c.19]    [c.79]    [c.154]    [c.378]    [c.55]    [c.117]   
Теория и проектирование гидро- и пневмоприводов (1991) -- [ c.68 , c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Теплообмен в газо-жидкостных средах



© 2025 chem21.info Реклама на сайте