Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также образование из глицина

    По месту образования гормоны разделяют на нейрогормоны, гормоны, секретируемые специальными железами, и тканевые гормоны. Классификация часто затруднена, так как не во всех случаях точно определены места образования и воздействия. Согласно общепринятому определению гормонов, вещества, которые, диффундируя, действуют вблизи места их образования, не должны называться гормонами, однако все же часто к гормонам относят нейротрансмиттеры (ацетилхолин, допамин, норадреналин, серотонин, гистамин, глутамат, глицин, -у-аминобутират, таурин, вещество Р и многие другие пептиды), а также модуляторы нейронной активности нейрогормонов [569]. Возможно, не будет ошибкой рассматривать классическую эндокринологию как одну из областей нейроэндокрииологии. Мозг уже характеризуется как высокоспециализированная эндокринная железа , ибо в общем нейротрансмиссия связана с секреторными процессами, в то время как электрическая передача нервных импульсов представляет собой исключительный случай. Несмотря на трудность четкого определения, все активные в отношении центральной нервной системы пептиды следует называть нейропептидами (разд. 2.3.3), при этом понятие нейрогормоны должно соответствовать действующей классификации гормонов. [c.233]


    Следует отметить, что в выяснение биологической роли витамина В и пиридоксальфосфата в азотистом обмене существенный вклад внесли А.Е. Браунштейн, С.Р. Мардашев, Э. Снелл, Д. Мецлер, А. Майстер и др. Известно более 20 пиридоксалевых ферментов, катализирующих ключевые реакции азотистого метаболизма во всех живых организмах. Так доказано, что пиридоксальфосфат является простетической группой аминотрансфераз, катализирующих обратимый перенос аминогруппы (КН,-группы) от аминокислот на а-кетокислоту, и декарбоксилаз аминокислот, осуществляющих необратимое отщепление СО от карбоксильной группы аминокислот с образованием биогенных аминов. Установлена коферментная роль пиридоксальфосфата в ферментативных реакциях неокислительного дезаминирования серина и треонина, окисления триптофана, кинуренина, превращения серосодержащих аминокислот, взаимопревращения серина и глицина (см. главу 12), а также в синтезе б-аминолевулиновой кислоты, являющейся предшественником молекулы гема гемоглобина, и др. [c.227]

    Другая катаболическая реакция треонина [уравнение (14-29), стадия б]—это расщепление на глицин и ацетальдегид, катализируемое серин-оксиметилтрансферазой [уравнение (8-19)]. Третьим и количественно более существенным путем является дегидрирование [уравнение (14-29), стадия в] и декарбоксилирование с образованием аминоаце-тона [уравнение (14-29), стадия г]. Аминоацетон выводится с мочой, но он может также быть окислен [уравнение (14-29), стадия д] в ме-тилглиоксаль, который может подвергаться превращению в D-лактат под действием глиоксилазы (гл. 7, разд. Л). Аминоацетон служит также источником 1-амино-2-пропанола при биосинтезе витамина Bis (стадия е, дополнение 8-Л). Было постулировано, что метилглиоксаль является природным регулятором роста, препятствующим чрезмерной пролиферации клеток у животных [63 ]. [c.114]

    Серии служит также основным источником глицина (стадия г) и одноуглеродных остатков, используемых для синтеза метильных и фор-мильных групп. Основной путь образования глицина из серина [70] — это реакция, катализируемая сериноксиметилазой (стадия г, рис. 4-12) в меньшей степени превращение идет через образование фосфатидил-серина, фосфатидилхолина и свободного холина [уравнение (14-30)]. Вследствие ограниченной способности нашего организма к синтезу метильных групп холин во многих случаях должен обязательно поступать в организм с пищей, в связи с чем его причисляют к витаминам. Однако в присутствии достаточных количеств фолиевой кислоты и витамина В12 организм уже не испытывает абсолютной потребности в холине. Холин может быть использован непосредственно для превращения обратно в фосфатидилхолин (рис. 12-8), но его избыток может подвергаться дегидрированию в бетаин [уравнение (14-30)]. Последнее соединение, содержащее четвертичный атом азота, является одним из немногих метаболитов, которые, подобно метионину, могут поставлять метильные [c.118]


    МЭА сравнительно легко окисляется сначала с образованием а-аминоальдегида, затем глицина, гликолиевой, щавелевой и, наконец, муравьиной кислот [//]. Эти кислоты также приводят к коррозии с образованием нерастворимых солей железа. [c.19]

    Отсюда ясно, что для успешного синтеза белков необходимо последовательное присоединение аминокислот с малой степенью образования побочных продуктов. Этого можно добиться, используя защитные группировки для аминогрупп, карбоксильных групп и боковых цепей, потенциально способных участвовать в реакции. В качестве примера вернемся к синтезу Gly-Ala если аминогруппа глицина защищена (превращена в химически неактивную), то взаимодействие молекул глицина между собой невозможно. Далее, если карбоксильная группа аланина также защищена, то единственная возможная реакция — взаимодействие карбоксильной (активированной) группы глицина и аминогруппы аланина с образованием искомого дипептида. [c.68]

    Попадание С в карбоксил возможно при образовании глицина из. N(7), С(5), С(4) ИЛИ из N(7), С(5), С(б). Выбор между этими двумя вариантами был сделан на основании гидролиза гуанина (б), давшего глицин с С в карбоксиле, т. е. образовавшийся из N(7), С(5), С(4). В согласии с этими наблюдениями, гидролиз гуанина (в), меченного в положениях 1, 3 и в аминогруппе, а также гидролиз ксантина (г) и мочевой [c.580]

    Поскольку УФ-облучение раствора формальдегида приводит к образованию сахаров (гексоз, пентоз, рибозы и дезоксирибозы), входящих, в частности, в состав нуклеиновых кислот, формальдегид можно рассматривать как предшественник в их абиогенном фотохимическом синтезе. По-видимому, формальдегид является также и предшественником аминокислот. В опытах Т. Е. Павловской и А. Г. Пасынского в УФ-облученных водных растворах формальдегида с солями аммония было зарегистрировано образование глицина, валина, аланина, глютаминовой кислоты и фенилаланина  [c.354]

    Эта субъединица фактически характеризуется высоким содержанием глицина, который придает молекуле большую гибкость, а также локализацией большинства цистеиновых групп у концов цепочки, что может благоприятствовать образованию межмолекулярных связей и возможности удлинения цепей. [c.218]

    Глицин образуется в организме как продукт распада белков, а также путем синтеза. Синтез глицина достигает больших размеров при введении в организм млекопитающих бензойной кислоты. В этом случае наблюдается прямая зависимость между количеством введенной в организм бензойной кислоты и выделенной с мочой гиппуровой кислоты. Так как гиппуровая кислота построена из бензойной кислоты и из глицина, то по количеству ее в моче можно судить об интенсивности образования глицина. При введении в организм млекопитающих животных бензойной кислоты и меченных изотопами веществ — предполагаемых предшественников глицина — можно по появлению изотопов в гиппуровой кислоте безошибочно судить, какие из введенных веществ действительно дают начало образованию глицина. Подобными исследованиями установлено, что важным источником образования глицина у животных является аминокислота серин. При введении в организм бензойной кислоты и меченых N и серина с мочой выделяется гиппуровая кислота, остаток глицина в которой оказывается меченным N и С . Преврандение серина в глицин может происходить следующим путем  [c.366]

    Этим реакциям явно благоприятствует невысокая скорость образования нужной пептидной связи, что происходит из-за пространственных препятствий, и по этой причине объемистые аминокислотные остатки, например валин и изолейцин, не следует располагать в местах сшивки. Во всех случаях, когда пептидные фрагменты содержат С-концевые остатки, не являющиеся глицином или пролином, должна использоваться также методика, делающая риск рацемизации минимальным. [c.410]

    Известно, что глицин относительно легко синтезируется в теле млекопитающих, а также у микроорганизмов и в растениях. Однако при определенных условиях цыплятам необходимо поступление глицина с пищей (стр. 122). К образованию глицина приводят различные реакции — расщепление серина (стр. 325), распад треонина на глицин и ацетальдегид (стр. 336), деметилирование саркозина (стр. 330), аминирование глиоксиловой кислоты (см. стр. 225). Эти реакции обнаружены в тканях животных. В процессе фотосинтеза меченая СОг быстро входит в состав гликолевой кислоты и глицина эти данные указывают на образование глицина из глиоксиловой кислоты [114]. Пути образования глицина у микроорганизмов детально не изучены. Однако имеются данные о взаимопревращении глицина и серина у ряда микробов [115, 116]. У Es heri hia oli глиоксиловая кислота, по-видимому, не превращается в глицин [117], тогда как образование глицина, из серина, вероятно, имеет место [118—120]. [c.319]

    Сейчас еще не ясно, может ли серин образовываться путем реакции (г), т. е. путем прямого окисления глутаминовой кислоты [671, ИЛИ же сначала должен произойти распад глутаминовой кислоты с образованием глицина (реакция (Э), из которого затем и образуется серинРеакция (е) является, безусловно, обратимой, так как глицин образуется из серина [67]. Серин является также предшественником цистеина, который образуется из серина и гомоцистеина в гомогенатах печени путем реакции (ж) [68]. [c.375]

    Необходимо отметить, что в опытах Танака и сотр. [22] образование аланина за счет восстановления дегидроаланина было равно потере серина, в то время как только 14,7% потери треонина возмещалось после восстановления образованием а-аминомасляной кислоты. В подобных опытах Андерсона [21] получалось только 35% теоретического количества а-аминомасляной кислоты. Одна из причин столь низкого выхода указана в статье Адамса [70]. Кажется вероятным, что часть 0-замещенных остатков треонина в гликопротеинах при действии щелочей претерпевает разрыв между С-2 и С-З с образованием глицина (см. также [77]). Танака и сотр. [22] наблюдали также, что 0-замещенный серин в ПЖБ разрушается по механизму р-эли- [c.292]


    Конденсация эфиров Ы-ацилглицина преимущественно гиппу-ровой кислоты с альдегидами, а также азлактонов глицина с альдегидами — наиболее широко используемый метод синтеза производных К-дегидроаминокислот. Он исследован многими авторами как с точки зрения улучшения синтеза дегидроаминокислот, так и с целью получения конкретных биологически активных пептидов. Изучена конденсация производных бензальдегида с гиппуровой кислотой с образованием (ЬХХХУП) оксазолонов [42]  [c.88]

    Две молекулы хирального вещества, являющиеся зеркальными отражениями друг друга, называются энантиомерами. Поскольку два энантиомера не являются точной копией друг друга, их называют изомерами. Описанный тип изомерии называется конфигурационной, или оптической, изомерией. Для того чтобы различить образующие пару энантиомеры, один из них обозначают символом R (от латинского re tus -правый), а другой символом S (от латинского sm/ster-левый) или соответственно о (от латинского dexter-правый) и l (от латинского /аеми - левый). Энантиомеры любого хирального вещества обладают одинаковыми физическими свойствами, например растворимостью, температурой плавления и т. п. Их химическое поведение по отношению к обычным химическим реагентам также неразличимо. Однако они различаются своей реакционной способностью по отношению к другим хиральным молекулам. Поразительно, что все природные аминокислоты обладают s-, или L-, конфигурацией у углеродного центра (исключение составляет глицин, не относящийся к хиральным соединениям). Только аминокислоты с такой конфигурацией у хирального углеродного центра биологически эффективны в образовании полипептидов и белков в большинстве организмов пептидные связи образуются в клетках при таких специфических условиях, которые неодинаковы для энантиомерных молекул. [c.445]

    Ацилировз1Гные пиперазиндионы также обладают диацил-имидной структурой. 1,4-Диацетилпиперазиндион-2,5 реагирует с метиловым и этиловым эфирами глицина с образованием соответствующих эфиров ацетилглицина [248] соответствующий [c.231]

    ТЕРМОЛИЗИН, фермент класса гидролаз, катализирующий гидролиз пептидных связей, образованных гл. обр. остатками гидрофобных аминокислот (изолейцином, лейцином, валииом, фенилаланином, метионином, аланином). Со значительно меньшими скоростями катализирует гидролиз связей, образованных остатками тирозина, глицина, треонина и серина. Не способен расщеплять пептидные связи, образованные с участием остатка пролина. Т. также катализирует р-цию транспептидирования (образование поперечных сшивок путем взаимод. концевой группы NHj пентаглицинового остатка молекулы с пептидной связью между концевыми остатками D-аланина др. фрагмента молекулы-гл. обр. в протеогликанах), не катализирует гидролиз амидов и эфиров карбоновых к-т. [c.542]

    Оксиаминокислоты и цистеин расщепляются до аммиака и кетокислоты (см. выше). Наряду с этим наблюдается также реакция альдольного разуплотнения, при оторой разрывается С—С связь с образованием альдегида и глицина. Из серина образуются формальдегид и глицин, из треонина — ацетальдегид и глицин. [c.478]

    Также как синтетические полипептиды, а-белки могут быть переведены в р-форму. Это достигается растяжением, иногда в специальных условиях. Рентгенограммы р-белков показывают, что их молекулярные цепи принимают при растяжении вытянутую конфигурацию. Водородные связи -в р-белках также, как в синтетических/полипептидах, направлены перпендикулярно оси волокна. р-Форма белков нестабильна и после удаления растягивающего усилия, как правило, вновь восстанавливается а-спиральная конфигурация цепей. Только один белок,— фиброин шелка в естественном состоянии существует в виде р-формы. Образование Р- Конфигурации цепей в фиброине шелка происходит в тот момент, когда шелковичный червь прядет шелковую нить. Образующиеся при этом большие силы давления развертывают молекулярные цепи белка. Стабильность образовавшейся р-конфигурации в нити фиброина шелка объясняется тем, что на отдельных фрагментах молекул этого белка скапливаются остатки с короткими боиовыми цепями — глицин, аланин, серин. Отталкивание боковых групп этих остатков во много раз меньше отталкивания больших боковых цепей других аминокислот. Поэтому Р-структуры, возникающие на отдельных фрагментах цепей фиброина шелка (в местах скоплений остатков с короткими боковым и дшями), оказываются относительно стабильными. Это подтверждается изучением р-структур синтетических полипептидов с короткими боковыми цепями, таких, как поли-(глицил- аланин). [c.543]

    Во многих организмах основным предшественником Сгостатков служит серии. р-Углерод серина отделяется в форме формальдегида путем прямого переноса на тетрагидрофолат с образованием метилен-Н4-Ро1 и глицина [уравнение (8-19)]. Последний в свою очередь может дать другую одноуглеродную единицу с потерей СОг под действием Н4Р01- и РЬР-зависимой глициндекарбоксилазной системы [реакция (14-32)]. Свободный формальдегид также может присоединяться [c.280]

    Аминокислотные анализы водных экстрактов образцов лунного грунта, проведенные в рамках американской программы Аполлон , показали присутствие глицина и аланина. Еще четыре аминокислоты были обнаружены с помощью газовой хроматографии в кислотном гидролизате экстракта. Это Glu, Ser, Asp, Туг. Спектроскопические данные одиозиачио показывают присутствие NH3, НСНО и H N в космическом пространстве. В луниых пробах также обнаружены исходные продукты для абиогенного образования внеземных аминокислот СН , Nj, СО, СО2, H N (20 — 70 нг/г). Возможно, правда, что часть предшественников аминокислот происходит от газов земных ракет. [c.48]

    Активирование Ы-защищенных фрагментов пептидов с С-концевым пролином. При введении карбоксикомпонента с С-концевым пролином образование азлактона невозможно, так что такие пептиды можно активировать, не опасаясь рацемизации. Нет опасности рацемизации также при активировании фрагментов с С-концевым глицином из-за отсутствия хиральности у этой аминокислоты. [c.172]

    Есть указания на принцига1альную возможность анализа структуры кристалла белка с помощью электронного иэлучения, а также посредством метода нейтронного рассеяния [162]. В будущем, вероятно, приобретут значение математические методы, которые позволят осуществлять на ЭВМ расчет третичной структуры на основе данных о первичной структуре [163]. Первые попытки, в основном в применении к спиральным белкам (миоглобин), привели к интересным результатам [164]. Хеглер и Хониг [165] рассчитали на примере полипептидной цепи, составленной из глицина и аланина, условия, необходимые для образования компактной глобулярной структуры белка. [c.384]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]

    Дипептидазы. Процесс переваривания пептидов, их расщепление до свободных аминокислот в тонкой кишке завершают дипептидазы. Среди дипептидаз кишечного сока хорошо изучена глицилглицин-дипептидаза, гидролизующая соответствующий дипептид до двух молекул глицина. Известны также две другие дипептидазы пролил-дипептидаза (пролиназа), катализирующая гидролиз пептидной связи, в образовании которой участвует СООН-группа пролина, и пролин-дипептидаза (пролидаза), гидролизующая дипептиды, в которых азот пролина связан кислотно-амидной связью. [c.423]

    Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа. Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсины ботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого — проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка. Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом. [c.426]

    Видимые в оптическом микроскопе коллагеновые волокна состоят из различимых в электронном микроскопе фибрилл—вытянутых в длину белковых молекул, названных тропоколлагеном. Тропоколлаген —основная структурная единица коллагена (рис. 21.2). Необходимо четко разграничивать понятия коллагеновые волокна и коллаген . Первое понятие по существу является морфологическим и не может быть сведено к биохимическим представлениям о коллагене как о белке. Коллагеновое волокно представляет собой гетерогенное образование и содержит, кроме белка коллагена, другие химические компоненты. Молекула тропоколла-гена—это белок коллаген. Одной из отличительных черт данного белка является то, что /з всех его аминокислотных остатков составляет глицин, 7з —пролин и 4-гидроксипролин, около 1%—гидроксилизин некоторые молекулярные формы коллагена содержат также 3-гидроксипролин, хотя и в весьма ограниченном количестве  [c.662]


Смотреть страницы где упоминается термин также образование из глицина: [c.326]    [c.374]    [c.377]    [c.96]    [c.173]    [c.123]    [c.45]    [c.46]    [c.53]    [c.182]    [c.204]    [c.225]    [c.262]    [c.285]    [c.290]    [c.432]    [c.506]    [c.107]    [c.316]    [c.640]    [c.641]    [c.422]    [c.471]   
Биохимия Том 3 (1980) -- [ c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния



© 2025 chem21.info Реклама на сайте