Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие разнородных частиц. Гетерокоагуляция

    ВЗАИМОДЕЙСТВИЕ РАЗНОРОДНЫХ ЧАСТИЦ. ГЕТЕРОКОАГУЛЯЦИЯ [c.87]

    Экспериментальные исследования процесса гетерокоагуляции, подтверждающие справедливость теоретических рассуждений, в настоящее время полностью не проведены. Однако следует отметить ряд весьма интересных работ, посвященных изучению взаимодействия разнородных частиц. Дерягин и сотрудники [194] измерили для различных концентраций электролита равновесные толщины жидких пленок, которые образуются между капельками ртути и кварцевой пластиной. Капельки ртути были различно поляризованы. Результаты опытов, однако, не подтвердили теорию. Так, изменение знака поляризационного напряжения не сопровождалось обращением знака, электростатических сил взаимодействия. [c.89]


    Наиболее полно изучены природа и механизм коагуляции гидрофобных коллоидов. Современная физическая теория устойчивости гидрофобных коллоидных систем основывается на учете сил вандер-вааль-сового притяжения между частицами и сил электростатического отталкивания, возникающего при перекрытии диффузных обкладок двойных электрических слоев при сближении частиц. Если взаимодействуют частицы различной природы, то при этом может измениться характер как молекулярного, так и электростатического взаимодействия. Иным окажется и влияние добавок электролита — слипание разнородных частиц (гетерокоагуляция) будет происходить при снижении концентрации электролита. [c.22]

    В случае гетерокоагуляции возможно существование трех порогов коагуляции первый порог (при минимальной концентрации электролита), отвечающий взаимодействию разнородных частиц, и два порога коагуляции (при больших концентрациях электролита), отвечающие групповым коагуляциям исходных компонентов смеси [4]. [c.171]

    Ионно-электростатическое взаимодействие разнородных частиц. У дисперсных частиц неодинаковой природы должен быть различным и заряд поверхности. При разноименных зарядах (потенциалах) поверхности на любых расстояниях, соответствующих перекрытию ДЭС, возникают силы притяжения, которые вызывают слипание частиц — гетерокоагуляцию или взаимную коагуляцию. При одинаковом знаке заряда и равных потенциалах поверхностей эти силы вызывают положительное расклинивающее действие — отталкивание однако при некотором различии в потенциалах они могут проявлять себя так е, как силы притяжения [98]. Следовательно, при разноименных потенциалах поверхности или одноименных, но при некотором различии в их величинах возникают электроповерхностные равновесные силы притяжения. [c.24]

    Процессы гетерокоагуляции исследованы мало, хотя смешанные системы, состоящие из микрообъектов различной природы, широко распространены в природе и технике. Изучалось влияние электролитов на устойчивость противоположно заряженных коллоидов [17], влияние размеров частиц на их взаимное слипание [18], определялись электрокинетические характеристики смешанных систем [19]. Для познания взаимодействия разнородных дисперсных частиц большой интерес представляют результаты опытов но прилипанию капель ртути к стеклу [20, 21], а также твердых частиц [c.130]

    Теория гетерокоагуляции, взаимодействия и слипания разнородных частиц в растворах электролитов была создана Дерягиным на базе общего подхода теории ДЛФО, т. е. учета баланса сил притяжения и отталкивания между частицами [9]. Не рассматривая здесь теоретические рассуждения и количественные соотношения, изложим наиболее существенные выводы теории гетерокоагуляции. [c.20]


    Наиболее полно изучены природа и механизм коагуляции лиофобных коллоидов. Современная физическая теория устойчивости лиофобных коллоидных систем, созданная Б. В. Дерягиным и Л. Д. Ландау [120] и, независимо от них, Фервеем и Овербеком [121] (теория ДЛФО), основывается на учете сил вандерваальсового притяжения между частицами и сил электростатического отталкивания, возникающих при перекрытии диффузных обкладок двойных электрических слоев сближающихся частиц. Различия в природе частиц могут изменить характер как вандерваальсового, так и электростатического взаимодействия их при достаточной разнородности частиц молекулярные и электрические силы могут поменяться ролями — первые будут приводить к результирующему отталкиванию, а вторые — к притяжению. Иным окажется и влияние добавок электролита — гетерокоагуляция или слипание разнородных частиц будут происходить при разбавлении раствора электролита. Особенности взаимодействия разнородных поверхностей учтены в теории гетерокоагуляции лиофобных коллоидов, развитой Б. В. Дерягиным [122]. [c.57]

    Вопрос об устойчивости дисперсных систем является одним из главных в коллоидной химии, в этой области накоплен огромный экспериментальный материал и создана физическая теория устойчивости лиофобных коллоидов. Встречающиеся на практике процессы коагуляции включают в себя взаимодействие не только одинаковых частиц, но и разнородных (гетерокоагуляция) и, в частном случае, противоположно заряженных. Примерами таких процессов является коагуляция смесей золей, а также процессы коацервации, крашения, флотации и др. Процесс гетерокоагуляции является наиболее общим случаем взаимодействия частиц и, можно с уверенностью сказать,— наиболее часто встречающимся на практике. [c.170]

    Дерягин Б. В. Теория гетерокоагуляции, взаимодействия и слипания разнородных частиц в растворах электролитов. — Коллоидн. журн., 1954, т. 16, с. 425 Dis uss. Faraday So ., 1954, № I8, 85. [c.544]

    Рассмотренные выше закономерности и теоретические представления касались гомокоагуляции, т. е. взаимодействия тождественных по природе и заряду поверхности частиц. Однако в природе и различных отраслях технологии гораздо чаще встречаются дисперсные системы, содержащие разнородные частицы, отличающиеся химической природой, знаком или величиной поверхностного заряда и т. п. Коагуляцию разнородных частиц называют гетерокоагуляцией. Именно она является наиболее общим случаем взаимодействия частиц, встречающимся, например, в таких процессах, как коацервапия, крашение, флотация, образование донных отложений в водоемах, образование осадков в сточных водах различных производств и т. п. Термином взаимная коагуляция обозначают более частный процесс — агрегацию разноименно заряженных частиц. [c.20]

    Га природной воде, цветной или мутной, содержатся коллоидный гумус и минеральные взвешенные вещества, которые имеют, как правило, отрицательный заряд. В процессе очистки ее коагулянтами, например сульфатом алюминия, в результате гидролиза образуется коллоидный гидроксид алюминия. Таким образом, в коагуляции участвуют разнородные частицы, т. е. происходит гетерокоагуляция. Образовавшиеся в процессе гидролиза коагулянта положительно заряженные полиядерные аквагидроксокомплексы алюминия — мицеллы и более крупные шарообразные агрегаты золя, а также и менее полиме-ризованные аквагидроксокомплексы хемосорбируются на поверхности глинистых или других минеральных частиц очищаемой воды. При этом происходит взаимодействие с гидратной оболочкой глинистой частицы с образованием водородных связей и одновременно нейтрализуется за- [c.36]

    Ионно-электростатические силы при одинаковой природе поверхностей и одинаковом по знаку и величине потенциале оказывают положительное расклинивающее давление. При некотором различии в величинах потенциалов одного и того же знака эти силы могут обусловить отрицательное давление, в то время как молекулярные силы для тел 0ДН011 природы выступают всегда как силы притяжения. В случае разной природы поверхностей, разделенных жидкой прослойкой, молекулярные силы могут вызывать и отталкивание,что зависит от соотношения постоя[1-ных межмолекулярного взаимодействия (постоянные Ван-дер-Ваальса) з, 1 зт А з и у1зз, где индексы 1, 2 и 3 соответствуют твердым телам и жидкой среде [4]. Процессы гетерокоагуляции исследованы мало, хотя смешанные системы, состоящие из микрообъектов различной природы, широко распространены в природе и технике. Изучалось влияние электролитов иа устойчивость противоположно заряя енных коллоидов [17], влияние размеров частиц на их взаимное слипание [18], определялись электрокинетические характеристики смешанных систем [19]. Для познания взаимодействия разнородных дисперсных частиц большой интерес представляют результаты опытов но прилипанию капель ртути к стеклу [20, 21], а также твердых частиц [c.130]


    Положение изменяется, если суспензия занимает объем, один из размеров которого сравним со средним сдвигом частиц за время т. В этом случае следует учитывать возможность протекания в результате взаимодействия дисперсных частиц с внутренними стенками капилляра гетеро-адагуляционного процесса, приводящего к возникновению прочно связанного с поверхностью первого слоя частиц. Очевидно, образование этого слоя является первой стадией облитерации. Согласно теории коагуляции разнородных дисперсных частиц, как при противоположных по знаку, так и при одинаковых по знаку, но различных по величине потенциалах поверхности яр и 11)2, ионно-электростатические силы, возникающие при перекрытии двойных ионных слоев, могут вызывать сближение микрообъектов [8]. Для разноименно заряженных поверхностей, если постоянная межмолекулярного взаимодействия частиц в дисперсной среде Л О, силовой (энергетический) барьер, препятствующий гетерокоагуляции, отсутствует и любое их соударение приводит к непосредственному слипанию. В том случае, когда г) и 1 2 одного знака, но г Ф 11)2, критическую концентрацию гетероадагуляции Ща) для плоских частиц в соответствии [c.168]

    Коагуляция—это слипание частиц коллоидной системы при их столкновениях в процессе теплового движения, перемешивания или направленного перемещения во внешнем силовом поле. В результате коагуляции образуются агрегаты — более крупные (вторичные) частицы, состоящие из скопления мелких (первичных). Первичные частицы в таких агрегатах соединены силами межмолекулярного взаимодействия непосредственно или через прослойку окружающей (дисперсионной) среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и уменьшением их общего числа в объеме дисперсионной среды (в нашем случае — жидкости). Слипание однородных частиц называется гомокоагуляцией, а разнородных — гетерокоагуляцией. [c.125]

    Коагуляция — это процесс укрупнения дисперсных частиц за счет их взаимодействия и объединения в агрегаты. Мелкие (первичные) частицы в таких агрегатах соединены силами межмолекулярного взаимодействия. Слипание однородных частиц называется гомокоагуляцией, а разнородных — гетерокоагуляцией. Вещества, способные вызвать коагуляцию частиц,называют в общем случае коагуляторами, а в водоподготовке — коагулянтами или гидролизующимися коагулянтами. Последние не только вызывают коагуляцию частиц загрязнений, но и образуют, гидролизуясь, малорастворимые продукты, способные объединяться в крупные хлопья. [c.136]

    В результате коагуляции из мелких первичных частиц образуются крупные агрегаты. Первичные частицы в таких агрегатах объединены силами межмолекуляр-ного взаимодействия либо непосредственно, либо через прослойку окружающей дисперсионной среды. Коагуляция сопровождается прогрессирующим укрупнением частиц и уменьшением их общего числа в объеме дисперсионной среды. Слипание однородных частиц называется гомокоагуляцией, а разнородных — гетерокоагуляцией. [c.21]


Смотреть главы в:

Коагуляция и устойчивость дисперсных систем -> Взаимодействие разнородных частиц. Гетерокоагуляция




ПОИСК





Смотрите так же термины и статьи:

Гетерокоагуляция

Частицы взаимодействие



© 2024 chem21.info Реклама на сайте