Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофобные коллоиды коагуляция

    Приведенная картина описывает механизм потери агрегативной устойчивости только качественно, но она указывает и сам путь установления количественного критерия кинетической устойчивости лиофобных коллоидов. Этот путь лежит через рассмотрение кинетики процесса коагуляции и расчет его скорости. Классическая и очень абстрактная теория кинетики необратимой коагуляции коллоидов была разработана Смолуховским в 1917 г. [14], задолго до создания теории ДЛФО. Главный ее недостаток состоял в том, что она полностью игнорировала пространственный характер изменения сил взаимодействия коллоидныХ 1 частиц друг с другом и позтому не давала возможности связать скорость коагуляции с параметрами потенциала взаимодействия. Полагая, что в условиях максимально быстрой коагуляции каждая встреча ( столкновение ) частиц является эффективной , т. э. приводит к их необратимому слипанию или слиянию, Смолуховский показал, что скорость изменения суммарной численной концентрации V частиц и агрегатов, состоящих из любого числа одинаковых первичных частиц, подчиняется уравнению [c.261]


    Дисперсные системы. Коллоидные растворы. Получение коллоидных растворов и и.х отличительные свойства. Степень дисперсности. Мицелла. Золи. Лиофильные и лиофобные коллоиды. Коагуляция и седиментация и причины образования осадка в коллоидных системах. Гели. Взаимная коагуляция коллоидов. Обратимые и необратимые коллоиды. [c.244]

    Энергия двойного электрического слоя, как следует из теории ДЛФО, играет первостепенную роль применительно к стабильности и коагуляции дисперсных систем. Так, раствор любой присадки в масле является олеофильным коллоидом, в котором плотность заряда значительно ниже, чем в лиофобных коллоидах. Снижение плотности заряда в масле сопровождается уменьшением диэлектрической проницаемости, что приводит к образованию более проч- [c.216]

    Теория медленной коагуляции лиофобных коллоидов получила развитие благодаря работам советского исследователя Н. А. Фукса, который рассчитал величину р, коэффициента, показывающего, во сколько раз уменьшится скорость медленной коагуляции по сравнению с быстрой. Наличие остаточного заряда создает энергетический барьер тем больший, чем больше величина дзета-потенциала. [c.426]

    Вопросы устойчивости дисперсных систем занимают центральное место в коллоидной химии, поскольку основной класс коллоидных систем — лиофобные коллоиды — термодинамически нестабильны, т. е. склонны к коагуляции. Коагуляция представляет собой процесс слипания (или слияния) частиц дисперсной фазы при потере системой агрегативной устойчивости. Придание системам устойчивости требует специальных методов стабилизации. Только при таких условиях возможно получение и использование многих ценных материалов, продуктов и других изделий, в частности лекарственных препаратов, аэрозольных средств и т. д. [c.424]

    Нарушение устойчивости растворов ВМС при введении электролитов нельзя отождествлять с коагуляцией лиофобных коллоидов. Коагуляция золей происходит при введении малых концентраций электролита и представляет собой обычно необратимое явление. Выделение из раствора ВМС происходит при добавлении относительно больших объемов электролита, на 3...5 порядков превышающих порог коагуляции и не подчиняющихся правилу Шульце—Гарди. Процесс является обратимым, и после удаления из осадка электролита ВМС снова способно к растворению. [c.368]

    Сопоставьте механизмы коагуляции лиофобных коллоидов и нарушение устойчивости растворов ВМС. [c.370]

    Отличительной особенностью лиофобных коллоидов является их двойственное отношение к электролитам. Так, присутствие небольших количеств некоторых, потенциалопределяющих ионов в дисперсионной среде является необходимым для придания всей лио-фобной системе агрегативной устойчивости. Но введение в устойчивый золь несколько ббльших количеств низкомолекулярных электро-литовг обычно вызывает сначала медленную, а затем по достижении пороговой, или критической, концентраций быструю коагуляцию золя. Фактически именно подобное поведение какого-либо золя под воздействием электролита считается достаточным, чтобы классифицировать его как лиофобный в отличие от лиофильных коллоидов, для коагуляциц которых необходима высокая концентрация электролита, порядка нескольких молей на литр. Анализ и критика более старых теорий и эмпирических закономерностей Марха, Фрейндлиха, Ленгмюра, Мюллера, Вольфганга Оствальда, Тежака и др., объясняющих потерю лидфоб ыми золями своей агрегативной устой- [c.259]


    Присадки, называемые диспергентами, выполняют в окисляющейся системе (топливо — продукты его окисления) в основном функции защитных коллоидов или пеп-тизаторов. Защитными коллоидами для растворов в углеводородной среде могут служить все поверхностно-активные вещества дифильной структуры [13] спирты, жирные кислоты и их соли, фенолы и их соли, амины и др. Действие защитных коллоидов усиливается с удлинением углеводородной цепи при полярной группе. Защитное действие лиофильных коллоидов по отношению к лиофобным объясняется адсорбционным взаимодействием их частиц. Концентрация добавляемого защитного коллоида имеет важное значение. При недостаточной концентрации или малой степени его дисперсности взаимодействие лиофильного и лиофобного коллоидов может привести к обратному результату — образованию крупных лиофобных агрегатов. Это придает неустойчивость коллоидной системе и повышенную чувствительность к внешним воздействиям (сенсибилизация), которая может, в свою очередь, привести к коагуляции и осаждению коллоидных частиц. [c.139]

    НЫХ особенностей поведения тонких слоев, а также, и это особенно важно, для объяснения медленной коагуляции лиофобных коллоидов. Эти вопросы будут рассмотрены в гл. 6 и 7. [c.155]

    Параллелизм между влиянием электролитов на устойчивость гидрозолей и их влиянием на -потенциал наиболее отчетливо выражен в случае многовалентных и органических ионов, которые могут перезаряжать межфазную поверхность. В этом случае с повышением концентрации электролита устойчивость коллоида резко уменьшается и наступает быстрая коагуляция. Однако при еще более высоких концентрациях достигается вторая область устойчивости, связанная с тем, что вследствие перезарядки поверхности коллоид снова приобретает электрический заряд (но уже противоположного знака), который его стабилизирует. При достаточно высокой концентрации электролита -потенциал в любом случае уменьшается до нуля, и устойчивость коллоида пропадает. Подобное поведение лиофобных коллоидов подтверждает то решающее значение, которое имеют для их устойчивости электрические свойства поверхности частиц. [c.197]

    Коллоидные частицы гидроокиси железа, кремнезема, глинозема и других веществ, защищенные гумусом, водой рек, морей и океанов, могут переноситься на значительные расстояния коагулируя в новой обстановке, они участвуют в образовании различных осадочных толщ (осадочных железных руд, бокситов, кремневых образований и т. д.). Если в речных водах содержится значительное количество ионов-коагуляторов (особенно Са ), коллоидные частицы коагулируют с образованием более или менее крупных хлопьев непосредственно в речной воде. В реках с большой скоростью течения скоагулированные частицы переносятся в море. Когда реки вымывают из берегов много гумусовых коллоидов (особенно в период паводков), частицы лиофобных коллоидов, включая глинистые минералы, оказываются защищенными и более устойчивыми к коагуляторам. В этом случае много коллоидных частиц транспортируется в моря, океаны, озера, и коагуляция значительной части коллоидов происходит в прибрежной зоне, в местах встречи фронта речной и более минерализованной и щелочной морской воды. Несмотря на очень незначительное содержание железа в морской воде, в отложениях морей прошлых геологических периодов встречаются огромные скопления металла. В палеозое и мезозое речные воды выносили в моря большие количества алюминия, который отлагался в виде коллоидных гидратов с образованием бокситов. [c.337]

    Снижение -потенциала обусловлено сжатием диффузионного слоя, уменьшением толщины ионной атмосферы под влиянием электростатического воздействия ионов введенного электролита и может быть вычислено из теории сильных электролитов Дебая — Гюккеля. Мюллер, учитывая только электростатические взаимодействия, путем расчетов пришел к обоснованию правила Шульце — Гарди и к зависимости между снижением -потенциала и концентрацией прибавляемого электролита. Однако ряд явлений не получил удовлетворительного объяснения электростатической теорией. Экспериментальный материал, полученный различными исследователями, убедительно доказывал, что коагуляция лиофобных коллоидов электролитами сопровождается адсорбцией ионов-коагуляторов, причем в большинстве случаев эта адсорбция носит обменный характер. Ионы-коагуляторы адсорбируются, вытесняя одновременно из двойного слоя в жидкость одноименно заряженные ионы, образующие наружную обкладку. [c.340]

    Механизм коагуляции лиофобных коллоидов и нарушения устойчивости ВМС различны. Коагуляция золей происходит обычно в результате сжатия двойного электрического слоя и уменьшения или полного исчезновения электрического заряда на поверхности частицы, являющегося в этом случае основным фактором устойчивости. Выделение из раствора ВМС при добавлении электролита объясняется уменьшением растворимости ВМС в концентрированном растворе электролита. Поэтому по аналогии с подобными явлениями в растворах низкомолекулярных [c.368]

    П. А. Ребиндер [34] показал, что как фактор стабилизации расклинивающее давление имеет значение лишь для лиофобных коллоидов с высокими потенциалами поверхности или разбавленных золей и эмульсий, но теряет его у большинства реальных систем. Кинетическая энергия частиц, соударяющихся с большой скоростью, может превзойти энергетический барьер между ними, после чего иод действием доминирующих сил сцепления наступает коагуляция. [c.82]


    Сенсибилизация проявляется в ухудшающем действии защитных реагентов, если они добавлены в недостаточных количествах. Это служило источником различных недоразумений, когда добавки к соленым буровым растворам очень небольших количеств карбоксиметилцеллюлозы вместо улучшения вызывали рост водоотдачи и разделение фаз. Н. П. Песков приписал подобные явления десорбции стабилизирующих ионов и переходу их на коллоидный полиэлектролит. Г. Фрейндлих считает сенсибилизацию частным случаем взаимной коагуляции коллоидов, связанной с их разноименной заряженностью. Такие представления хорошо объясняют сенсибилизацию лиофобных коллоидов, но неприменимы для лиофильных. Более вероятно, что макромолекулы защитного реагента, присутствующие в количествах, недостаточных для образования сплошной полимер-глинистой структуры, вызывают возникновение местных структурированных сгустков, перемежающихся областями с разреженной структурой. [c.93]

    Лиофобные коллоиды являются термодинамически неустойчивыми системами, стабильность которых обусловлена наличием адсорбционных ионных или молекулярных слоев. Изменения состояния этих слоев, механизм образования и свойства которых были рассмотрены в главах четвертой и пятой, сопровождаются изменением устойчивости лиофобных коллоидов и при определенных условиях могут приводить к потере устойчивости внешне это проявляется в агрегации и выпадении частиц из раствора или в их коагуляции. Таким образом, теория коагуляции тесно связана с выяснением природы устойчивости и самого существования золей, что придает ей большое значение. Условия коагуляции золей весьма различны и зависят от природы стабилизующих слоев. Целесообразно, поэтому, рассмотреть эту проблему отдельно для золей с ионными и молекулярными адсорбционными слоями. [c.135]

    УСТОЙЧИВОСТЬ ЛИОФОБНЫХ коллоидов с ИОННЫМИ АДСОРБЦИОННЫМИ СОЛЯМИ. КОАГУЛЯЦИЯ ЛИОФОБНЫХ коллоидов ЭЛЕКТРОЛИТАМИ [c.135]

    Наконец, роль ориентации поверхностно-активных молекул в адсорбционных слоях приобретает особое значение в случае образования ими двухмерных гелеобразных структур, обладающих повышенными структурно-механическими свойствами, которые подробно исследовались Трапезниковым. Обладая довольно высокой упругостью и механической прочностью, подобные адсорбционные пленки могут эффективно защищать коллоидные частицы от возможности слипания. Это явление лежит в основе защитного действия желатины и некоторых мыл против коагуляции лиофобных коллоидов. Так, например, при добавлении всего 0,01 мг желатины на мл золя золота можно защитить его от коагуляции 1 мл 10%-ного раствора ЫаС1. Зигмонди назвал эту величину (0,01 мг) золотым числом желатины и определил подобные числа для ряда других веществ. Аналогичным образом было определено защитное действие в отношении золей серебра ( серебряное число ), конгорубинового ( рубиновое число ), серы, берлинской лазури, окиси железа (табл. 14), из которых методически наиболее удобно определение рубинового числа . [c.146]

    Кинетика коагуляции лиофобных коллоидов [c.261]

    Выделение белков из водных растворов южeт быть осуществлено повышением концентрации солей этот процесс называется высаливанием. Высаливание белков производится полунасыщенными или насыщенны.чш растворами солей (На2804, (НН4)2 804 и др.) и совершенно отличается от коагуляции лиофобных коллоидов слабьпш концентра- [c.184]

    Различные главы монографии имеют неодинаковую степень законченности. Наиболее закончены главы, посвященные дисперсионной и электростатической слагающим расклинивающего давления, теориям обратимой и необратимой коагуляции и теории агрегативной устойчивости лиофобных коллоидов. Главы с описанием адсорбционной и структурной слагающих расклинивающего давления отражают сложность теоретического подхода и законченность его в настоящее время для общего случая. [c.203]

    Определив из графика область концентраций, где можно ожидать излом на кривой, снимают еще несколько кинетических кривых при концентрациях, лежащих в пределах этой области. Зависимость длительности первой стадии коагуляции от концентрации электролита изображают в виде кривых t = /(С) или =/(lg ). Подобного рода кривые представлены на рис. 14. Находят на них точку излома. Концентрация электролита, соответствующая этой точке, есть ПБК. То же самое проделывают для электролитов с другой валентностью коагулирующего иона. Далее устанавливают соотношение ПБК под влиянием ионов различной валентности и сравнивают его с известным правилом Шульце— Гарди. Как известно, это соотношение является следствием современной физической теории устойчивости лиофобных коллоидов и формулируется как правило обратной пропорциональности коагулирующих концентраций электролитов шестой степени их валентности  [c.87]

    Последнее предположение само по себе не очевидно. Оно связано с тем подтвержденным рядом экспериментов фактом, что свойства жидкости вблизи лиофобной новерхности отличаются от объемных только изменениями концентрации растворенных ионов и молекул и наличием электрического поля, но ничем другим. Этим упрощается расчет взаимодействия поверхностей, отделенных тонкой прослойкой, что и позволило построить последовательную количественную теорию устойчивости лиофобных коллоидов. Эта теория за более чем 30-летний период получила широкое распространение и была с успехом применена к объяснению как коагуляции лиофобных золей электролитами, так и многих других явлений. [c.30]

    Коагуляцию золя можно вызвать прибавлением к нему другого золя, частицы которого заряжены противоположно первому. Это так называемая взаимная коагуляция лиофобных коллоидов. Для полной коагуляции в данном случае требуется соблюдать определенное соотнощение в количествах реагирующих растворов. Отклонения от этого соотношения в ту или другую сторону резко ослабляют коагуляцию, а при значительных отклонениях коагуляция вовсе не происходит. Синтез каолинита из гидрозолей АЬОз и Si02, проведенный в электродиализаторе, был описав недавно В. А. Каргиным. Такого рода процессы взаимной коагуляции происходят и в почвах. [c.523]

    Пороги быстрой коагуляции, характеризующие первую стадию коагуляции адсорбционно ненасыщенных латексов, могут быть использованы для вычисления постояяной ван-дер ваальсова дритяжения, входящей в критерий устойчивости лиофобных коллоидов, теоретически устано влелный Б. В. Дерягиным и Л. Д. Ландау  [c.130]

    Дисперсная система, устойчивая в отношении коагуляции, может быть малоустойчивой в отношении гетерокоагуляции. В случае лиофобных коллоидов это следует из теории гетерокоагуляции Дерягина, согласно которой взаимодействие частиц определяется меньшим из значений поверхностных потенциалов частиц. Следовательно, как бы ни был высок потенциал частиц дисперсии, они будут прилипать к поверхности, если последняя слабо заряжена. Эта неустойчивость дисперсии по отношению к адагуля- [c.334]

    Дисперсная система, устойчивая в отношении коагуляции, может быть малоустойчивой в отношении гетерокоагуляции. В случае лиофобных коллоидов это следует из теории гетерокоагуляции Дерягина, согласно которой взаимодействие частиц определяется меньшим из значений поверхностных потенциалов частиц. Следовательно, как бы ни был высок потен-диал частиц дисперсии, они будут прилипать к поверхности, если последняя слабо заряжена. Эта неустойчивость дисперсии по отношению к адагуляции не привлекает внимания в традиционном коллоидно-химическом эксперименте (где частицы могут прилипать к внутренней поверхности содержащего дисперсию сосуда), поскольку он завершается после формирования первого монослоя частиц. Формирование второго слоя практически невозможно, если система устойчива в отношении меж-частичных взаимодействий, т. е. агрегативно устойчива. Однако прилипание можно неограниченно усилить, если обеспечить контакт частиц с достаточно большой поверхностью, даже при мо-нослойной их локализации. [c.369]

    Наибольший успех теории дальнодействующих поверхностных ил электростатической и молекулярной природы связан с тем обстоятельством, что на ее основе оказалось возможным количественно объяснить устойчивость лиофобных коллоидов и роль электролитов в их дестабилизации. Лиофобные золи — зто коллоиды, частицы которых относительно слабо взаимодействуют с молекулами дисперсионной среды. Их взаимодействие поэтому может быть сведено к силам электростатического отталкивания, возникающим при перекрытии ионных атмосфер, и силам дисперсионного взаимодействия. Это было предположено уже в статье Кальмана и Вильштетера [1] и положено в основу теории медленной коагуляции слабо заряженных и высокодисперсных коллоидов одного из авторов [2, 3] данной монографии. Практически нулевая скорость коагуляции обеспечивает лгрегативную устойчивость дисперсной системы, т. е. устойчивость ло отношению к процессам агрегирования. [c.259]

    Остановимся вкратце лишь на тех работах, которые ближе к тематике книги. Ряд вопросов теории устойчивости лиофобных коллоидов был рассмотрен Барбоем влияние на пороги коагуляции величины потенциала частиц, заряда побочных ионов и состава электролита [27]. Все эти расчеты основаны на анализе баланса сил молекулярного притяжения и ионно-электростатического отталкивания в системах, состоящих из плоских частиц с фиксированным потенциалом диффузного двойного слоя. Броуновское движение частиц при этом полностью игнорировалось. Напротив, кинетические аспекты устойчивости подробно рассматривались Глазманом и Клигман [28]. Глазман и Барбой с сотр. [29]йоказали, что такие явления, как аддитивность, антагонизм, синергизм, в действии смесей ионов могут быть в принципе объяснены с помощью модели взаимодействующих плоских частиц при определенных предположениях относительно ад- [c.269]

    Аллен и Матиевич [249—251] исследовали коагуляцию коллоидного кремнезема в области pH 6—11 и нащли, что механизм в данном случае иной, чем для лиофобных коллоидов. Критические концентрации коагулянта для различных солей не коррелируют с изменениями электрофоретической подвижности или с изменением электрокинетического потенциала. Хардинг [237] провел аналогичные наблюдения, хотя и сообщил, что кремнеземные частицы большего размера, т. е. диаметром 50 мм (вместо 12 нм), ведут себя в соответствии с теорией двойного электрического слоя. Поведение же небольших частиц кремнезема вследствие сказанного не может быть объяснено общепринятой теорией. Аллен и Матиевич [249] обнаружили, что катион коагулирующей соли вступает в обмен с протоном силанольной группы на поверхности. Коагулирующий эффект, вызываемый целым рядом катионов, определяется скорее числом ион-эквивалентов вступающих в обмен ионов, чем валентностью иона. Авторы предположили, что после адсорбции очередного катиона поверхность кремнезема теряет одну силанольную группу, способную образовывать водородную связь с водой, [c.510]

    В качестве физической основы построения теории устойчивости коллоидов взяты термодинамические свойства полимолекулярных жидких прослоек, зависящие от дальнодействующих поверхностных сил, порождающих различные слагающие расклинивающего давления — их основной термодинамической характеристики. В этом отношении подход автора резко отличен от подхода, принятого в монографии" Фервея и Овербека и в большинстве последующих работ. В них фактически рассматриваются только молекулярные и ионно-электростатические взаимодействия, которыми можно довольствоваться, и то не всегда (только в случае лиофобных коллоидов), а более широкое и строгое рассмотрение эффектов расклинивающего давления отсутствует. Одна из причин заключается в том, что, например, представление о структурной слагающей расклинивающего давления, выдвинутое автором еще в начале 1940-х годов, долго подвергалось сомнению и только в последнее время вошло в обиход под названием структурные силы . Неожиданностью явилась и обнаруженная нами электронная слагающая расклинивающего давления . В то же время в данной монографии теория ионно-электростати-ческой слагающей расклинивающего давления и устойчивости лиофобных коллоидов изложена в наиболее общей и строгой аналитической форме, так же как и теория обратимой коагуляции. Этому в значительной степени способствовало участие в подготовке глав VII, IX, X В.М. Муллера и написание им главы XI и Приложения III, а также участие A.B. Прохорова в подготовке главы XII. [c.4]

    Вопрос о возможности фиксации частиц на сравнительно далеких расстояниях, отвечающих координате вторичного минимума, впервые подробно рассмотрен Ефремовым и Нерпиным (284, 308—312]. Влияние электролитов на процесс дальней агрегации и зависимость физико-мехапических свойств систем, возникающих в результате его протекания, от концентрации и валентности противоионов в дисперсионной среде изучены в работах [313, 314]. Показано, что в отличие от соотношения = onst, установленного при исследовании коагуляции лиофобных коллоидов, в случае фиксации частиц относительно Друг друга на далеких расстояниях должно выполняться равенство = [c.51]


Смотреть страницы где упоминается термин Лиофобные коллоиды коагуляция: [c.174]    [c.131]    [c.383]    [c.336]    [c.174]    [c.142]    [c.152]    [c.27]   
Физическая и коллоидная химия (1988) -- [ c.327 , c.328 ]

Учебник физической химии (1952) -- [ c.384 ]

Учебник физической химии (0) -- [ c.424 ]




ПОИСК





Смотрите так же термины и статьи:

Закономерности коагуляции лиофобных коллоидов

Кинетика коагуляции лиофобных коллоидов

Коагуляция

Коллоиды

Коллоиды коагуляция

Коллоиды лиофобность

Критерии коагуляции лиофобных коллоидов

Лиофобные коагуляция

Лиофобные коллоиды

Устойчивость и коагуляция лиофобных коллоидов

Устойчивость и коагуляция лиофобных коллоидов Устойчивость лиофобных коллоидов с ионными адсорбционными слоями Коагуляция лиофобных коллоидов электролитами

Устойчивость лиофобных коллоидов с ионными адсорбционными солями. Коагуляция лиофобных коллоидов электролитами



© 2024 chem21.info Реклама на сайте