Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные частицы системы

    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]


    Различают истинные и коллоидные растворы. В первых вещества распадаются на частицы, равные размерам молекул или ионов (10 —10 см). Коллоидные системы лежат между истинными растворами и механической смесью это микрогетерогенные высокодисперсные системы (радиус частиц 10 —10 см) и грубодисперсные системы (радиус частиц 10 —10 см). Они агрегативно неустойчивы, так как без специальной (дополнительной) стабилизации коллоидные частицы объединяются и оседают. [c.130]

    Второй из указанных выше подходов учитывает взаимодействие между молекулами моющих присадок и уже образовавшимися углеродистыми отложениями в масле. В этом случае эффективность моющего действия определяется рядом процессов, протекающих в системе параллельно или последовательно. Одним из них является адсорбция молекул присадок на металлических поверхностях и создание на границе раздела фаз заряженного слоя, препятствующего образованию отложений. Одновременно с этим в объеме масла происходит взаимодействие молекул моюще-диспергирующих присадок с твердыми частицами в виде солюбилизации и диспергирования последних, что в конечном счете приводит к повышению коллоидной стабильности системы. В результате этого снижается интенсивность образования отложений, а следовательно, и загрязненность основных узлов и деталей двигателя 232, 233]. [c.220]

    Связанно-дисперсные системы — гели. В определенных условиях, в результате действия межмолекулярных сил, физических, слабых взаимодействий, коллоидные частицы способны связываться с образованием пространственных структур. Такие структурированные системы получили название гелей. Переход золя в гель зависит от многих факторов  [c.17]

    Работа, затраченная при дроблении, диспергировании, дисперсной фазы, превращается в потенциальную энергию ненасыщенных связей на границе раздела фаз. Таким образом, коллоидные частицы обладают некоторым запасом избыточной поверхностной энергии, находящейся в тесной зависимости от поверхностного натяжения (а) на границе раздела фаз. При высокой дисперсности и, следовательно, большой суммарной поверхности раздела фаз (5) величина избыточной поверхностной энергии системы может достигать значительных величин. Величина свободной поверхностной энергии коллоидной системы может быть вычислена по формуле [c.22]

    К нетепловым эффектам относят явления в полях с большой напряженностью (выше 100 В/см), называемые по терминологии Швана сильными взаимодействиями, и явления в слабых полях или слабые взаимодействия. В сильных полях (помимо нагрева) Наблюдаются эффекты насыщения диэлектрика, ориентация коллоидных частиц (проявляющаяся в биологических системах) и пондеромоторное действие. В слабых полях возможны резонансы макромолекул или биологических структур микроскопических размеров [21]. [c.85]


    Влияние pH. Характеристики динамических мембран в значительной степени зависят от pH обрабатываемых растворов. При изменении pH меняется ионообменная способность заряженных мембран, что отражается на степени задержания различных ионов. Например, мембраны, образованные полиакриловой кислотой, в щелочной среде обладают значительно большей селективностью по Na l и Na2S04, чем по Mg b, поскольку Mg2+ является многовалентным противоионом [98]. В кислой среде мембрана переходит в нейтральную форму и наблюдается противоположная картина. Влияние pH является существенным и по той причине, что большинство мембранообразующих добавок представляет собой коллоидные системы, а в зависимости от pH может наблюдаться изменение размера коллоидных частиц, их растворение или коагуляция. [c.89]

    Совместимость смесей оценивалась нами по методике ЦНИИ МФ [54], исходные данные для этого - размеры и количество коллоидных частиц в единице объема были получены на оптической автоматизированной системе. [c.108]

    Впервые уравнения подобного типа для описания поведения во времени коагулирующей дисперсной системы были рассмотрены Смолуховским. Он моделировал дисперсную систему, состоящую из сферических коллоидных частиц. Под действием броуновской диффузии эти частицы могут сталкиваться и слипаться (коагулировать), что приводит к изменению во времени их размеров и числа. Смолуховский рассмотрел дискретный аналог уравнения (5.8). Впоследствии этим уравнением занимались многие исследователи. Достаточно полные обзоры по общим и частым методам его решения можно найти в работе [102]. [c.82]

    Присадки, называемые диспергентами, выполняют в окисляющейся системе (топливо — продукты его окисления) в основном функции защитных коллоидов или пеп-тизаторов. Защитными коллоидами для растворов в углеводородной среде могут служить все поверхностно-активные вещества дифильной структуры [13] спирты, жирные кислоты и их соли, фенолы и их соли, амины и др. Действие защитных коллоидов усиливается с удлинением углеводородной цепи при полярной группе. Защитное действие лиофильных коллоидов по отношению к лиофобным объясняется адсорбционным взаимодействием их частиц. Концентрация добавляемого защитного коллоида имеет важное значение. При недостаточной концентрации или малой степени его дисперсности взаимодействие лиофильного и лиофобного коллоидов может привести к обратному результату — образованию крупных лиофобных агрегатов. Это придает неустойчивость коллоидной системе и повышенную чувствительность к внешним воздействиям (сенсибилизация), которая может, в свою очередь, привести к коагуляции и осаждению коллоидных частиц. [c.139]

    Дисперсная фаза необратимых НДС (например, карбоиды, частицы сажи и др.) не может растворяться в дисперсионной среде поэтому такие НДС относят к типичным коллоидным (необратимым) системам. В отличие от обратимых необратимые НДС более неустойчивы и в результате взаимодействия частиц системы друг с другом они расслаиваются. Прн изменении внешних условий (например, температуры) обратимые системы могут также быть неустойчивыми. [c.17]

    Кинетическая, или седиментационная устойчивость определяет способность системы противостоять оседанию или всплыванию частиц дисперсной фазы в определенных условиях под действием силы тяжести. Седиментационная устойчивость является функцией размеров частиц дисперсной фазы и понижается с укрупнением коллоидных частиц. [c.22]

    Одно из девяти сочетаний Г/Г в обычных условиях не может образовать коллоидной системы, так как газы при любых соотношениях дают истинные растворы. Однако и газы могут проявлять некоторые свойства коллоидных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе. Ближе к коллоидным системам жидкие растворы, в которых молекулы растворителя и растворенного вещества значительно отличаются по размерам и природе. К таким растворам относятся растворы сильно ассоциирующих веществ и растворы полимеров, которые при определенных условиях могут образовывать ассоциативные и молекулярные гетерогенные дисперсные системы. Размеры молекул (ассоциатов) растворенного вещества иногда превышают размеры обычных коллоидных частиц. Эти системы обладают многими свойствами, характерными для типичных гетерогенно-дисперсных систем. Они как бы связывают в единое целое все дисперсные системы и указывают на непрерывность перехода от истинных растворов к истинным гетерогенным дисперсным системам. [c.14]

    Следует указать некоторые условия применимости молекулярно-кинетической теории к коллоидным системам. Во-первых, коллоидная система рассматривается как частный случай истинного раствора с достаточно крупными молекулами растворенного вещества, где дисперсионная среда играет роль растворителя, а дисперсная фаза — растворенного вещества. При этом сделано допущение об отсутствии межмолекулярных взаимодействий на поверхности коллоидных частиц. [c.18]

    Движущей силой процесса осмоса является разность химических потенциалов растворителя и раствора. Возникающее при этом давление называют осмотическим. Осмотическое давление является функцией размеров и концентрации частиц растворенного вещества. В коллоидных системах осмотическое давление ослаблено вследствие относительно больших по сравнению с молекулами размеров и соответственно малой концентрации коллоидных частиц. Несмотря на это применение современных методов анализа позволяет надежно регистрировать значения осмотического давления, посредством которых возможно изучать коллоидные системы, в частности изменение размеров коллоидных частиц при воздействиях на систему и их распределение по размерам в растворах различной концентрации. [c.19]


    Электрокинетические явления. Электрокинетическими явлениями называют перемещение одной фазы относительно другой в электрическом поле и возникновение разшзсти потенциалов при течении жидкости через пористые материалы (потенциал протекания) или при оседании частиц (потенциал оседания). Перенос коллоидных частиц в электрическом ноле называется электрофорезом, а течение жидкости через капиллярные системы иод влиянием разности потенциалов — электроосмосом. Оба эти явления были открыты профессором Московского университета Ф. Ф. Рейесом в 1809 г. [c.329]

    Процесс диффузии заключается в самопроизвольном выравнивании концентраций молекул или коллоидных частиц в системе, находящихся в хаотичном тепловом движении. Результатом диффузии является установление одинакового химического потенциала каждого компонента и соответственно равномерного распределения ди )-фундирующих частиц по всему объему системы. [c.19]

    Коллоидные частицы, то есть частицы дисперсной фазы в коллоидной системе, еще не видны в обычный оптический микроскоп, несмотря на их более крупные размеры по сравнению с молекулами в истинных растворах. [c.21]

    В коллоидных системах к этому добавляется еще эффект рассеяния света коллоидными частицами, наиболее значительный для лучей г риьигрй л.пинпй нплны. т. е. для синих и фиолетовых лучей. Этот фактор действует значительно слабее, чем избирательное поглощение колебаний с определенной длиной волны, однако влияние его все же заметно проявляется. Вследствие этого в отраженном (точнее говоря, в рассеянном) свете большинство бесцветных коллоидных растворов имеет синеватый оттенок, а в проходящем свете, соответственно, — оранжевый или красноватый, так как проходящий свет частично лишается синих и фиолетовых лучей. Если само вещество дисперсной фазы коллоида окрашено, то коллоидный раствор приобретает интенсивную окраску. Таковы, например, оранжевые золи сернистого мышьяка или темно-коричневые золи гидроокиси железа. При этом в некоторых случаях на цвет раствора оказывает влияние и степень дисперсности. Так, высокодисперсные золи золота окрашены в ярко-красный цвет при уменьшении степени дисперсности цвет их изменяется и становится темно-синим при коагуляции. [c.536]

    Коллоидные системы могут быть получены двумя методами дисперсионным — дроблением и конденсационным — связыванием молекул в коллоидные частицы. Дисперсионные методы осуществляются с помощью различных мельниц истирание, размол, действие ультразвука и пр. Конденсационные методы основаны обычно на химических взаимодействиях компонентов дисперсной фазы и дисперсионной сре- [c.21]

    Синтетический латекс представляет собой коллоидную дисперсию типа масло в воде. Частицы каучука (масляная фаза) в латексе имеют обычно размеры от нескольких десятков до сотен нанометров (редко менее 10 и более 1000 нм). Как всякая дисперсная система с развитой поверхностью раздела, латексы термодинамически нестабильны. Для сохранения коллоидных свойств системы в течение длительного времени поверхность раздела следует гид-рофилизовать, что достигается введением в систему дифильных поверхностно-активных веществ (ПАВ), например солей карбоновых кислот различной природы и строения. Адсорбированные на поверхности раздела гидратированные молекулы и ионы ПАВ образуют защитные слои. Эффективная толщина таких слоев, оцененная по данным вискозиметрических [4, 5], дилатометрических [6], термографических [7] измерений, изменяется от нескольких единиц до десятков нанометров в зависимости от природы и количества образующего их эмульгатора, а также от степени заполнения поверхности частиц адсорбированным эмульгатором (так называемой адсорбционной насыщенности). Адсорбционная насыщенность синтетических латексов обычно лежит в диапазоне от [c.587]

    Размеры коллоидных частиц колеблются в пределах 1-100 нм. Дальнейшее измельчение дисперсной фазы приводит к переходу высокодисперсной коллоидной системы в молекулярно-дисперсную, приближающуюся по свойствам к истинным растворам. Наличие частиц с размерами более 0,1 мкм (Ю см) характерно для микро-гетерогенных и грубодисперсных систем, уже не считающихся коллоидными, но совпадающих по некоторым свойствам с коллоидными дисперсиями. [c.22]

    Если взять два коллоидных растрора с таким расчетом, что после их смешения в растворе и взаимодействия ионов Ag с ионами 1 останется заметный избыток одного из вида ионов, например ионов Ag% то на поверхности положительно заряженных частиц сохранится почти неизменным положительный заряд. Заряд отрицательно заряженных частиц уменьшится по двум причинам — вследствие десорбции, вызванной нарушением адсорбционного равновесия, и вследствие взаимодействия ионов 1" на поверхности с ионами Ag оставшимися в избытке в растворе. В результате отрицательный заряд частиц уменьшится до нуля. Далее на незаряженной поверхности начнут адсорбироваться ионы Ag4 которые находятся в избытке в растворе. В результате частицы приобретут положительный заряд, произойдет перезаряд коллоидных частиц, система стабилизируется. Перезаряд коллоидных частиц потребует некоторого времени. Поэтому перезаряд может произойти только в том случае, если его скорость будет больше, чем скорость коагуляции, вызванной встречами частиц, несущих противоположный заряд, и частиц, потерявших свой заряд, не успевших перезарядиться. [c.423]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]

    Вьпие ( 18 этого раздела) было указано, что все гетерогенные дпсперсиыс системы являются неустойчивыми. В агрегативном отношении особенно неустойчивыми являются тонкодисперсные, т. е. коллоидные системы. Одиако на практике встречаются относительные устойчивые коллоидные системы, что обусловлено наличием электрического заряда у коллоидных частиц. Будучи одноименно заряжены, коллоидные частицы при сближении отталкиваются друг от друга и, следовательно, коагуляция в такой коллоидной системе не происходит. [c.194]

    Устойчивость КОЛЛОИДНОЙ системы может быть утрачена в результате нейтрализации электрического заряда частиц дисперсной фазы. Эта нейтрализация может быть достигнута при введении в коллоидную систему электролитов. Ионы введенного электролита нейтрализуют заряды противоположного знака, находящиеся иа поверхности коллоидной частицы. Нейтрализующее действие ионов усиливается с увеличением заряда ионов, В результате происшед-щсй нейтрализации зарядов коллоидные частицы снова получают способность коагулировать. Таким образом введение в коллоидную систему электролита устраняет препятствие коагуляции, которое 0бус.)10влен0 электрическими зарядами частиц дисперсной фазы. [c.195]

    Рассеяние света всегда происходит ио различным направлениям по отношению к проходящему лучу света. Рассеянный свет образует вокруг коллоидной частицы, являющейся центром рассеяния, светящееся поле. В грубодисиерсных системах все лучи спектра рассеиваются одинаково. В очень высокодисперсных системах интенсивность рассеяния света обратно пропорциональна длине волны в четвертой стеиени. Таким образом, наиболее сильному рассеянию подвергается свет с короткими волнами (фиолетовый и синий), свет с длинными волнами (красный и оранжевый) рассеивается слабее. Поэтому высокоднсперсные коллоидные спстемы в большинстве случаев синеватые ири наблюдении в боковом рассеянном свете, а в проходяидем свете — красноватые. Коллоидные системы с частицами, размеры которых соизмеримы с длиной волны света, обычно рассеивают лучше свет с короткими волнами. При этом разница в силе рассеяния света различных длин воли сказывается менее резко. Интенсивность рассеяния света обратно пропорциональна длине волны в третьей, второй и первой степени. [c.197]

    Исходя ИЗ развитых Дерягиным представлений о расклинивающем действии двойных ионных слоев и уравнения Штауффа, в работах И. Ф. Ефремова, О. Г. Усьярова и И. С. Лаврова рассмотрено взаимодействие двух коллоидных частиц, имеющих наведенные дипольные моменты. Увеличение напряженности электрического поля вызывает снижение силового (потенциального) барьера взаимодействия частиц, а следовательно, уменьшение устойчивости дисперсной системы и ускорение коагуляционных процессов. Если 2г>И, то поляризационное взаимодействие слабо зависит от расстояния и определяется значением напряженности электрического поля Е и параметрами двойного ионного слоя. При этом электрополе играет роль своеобразной электрической ловущки . [c.7]

    Неокисленные битумы имеют более высокое содержание ароматических углеводородов, меньшее содержание парафино-нафтеновых углеводородов и асфальтенов. Неокисленные битумы и полимеры СБС имеют большое сродство и поэтому в большей степени совместимы. Это первая причина лучшей совместимости. Вторая - повышенное содержание асфальтенов в составе битумов приводит к стерическим затруднениям при совмещении, причем сами асфальтены в процессе растворения не участвуют, а более высокое содержание асфальтенов характерно как раз для окисленных битумов. И третье. Исследование коллоидной структуры битумов методом малоуглового рассеяния рентгеновских лучей показало, что в составе окисленных битумов содержится 30-31% мелких коллоидных частиц размером до 16 А и 69-70% крупных коллоидных образований с размерами до 440 А. Такой битум, представленный в основном грубодисперсными частицами, можно отнести к системам типа золь-гель . Неокисленный битум содержит 85-86% частиц с размерами 9-10 А и лишь 12-13% частиц с размерами до 405 А. Такую коллоидную систему можно отнести к типу золь . В мелкодисперсной системе заметно выше скорости диффузии растворителя в полимер, процессы набухания проходят быстрее, растворение более полное. [c.39]

    В отличие от истинных растворов коллоидные системы являются гетерогенными. Размеры коллоидных частиц по сравнению с размерами молекул диспергирующей среды настолько велики, что между ЖИД1С0Й и твердой фазами образуется поверхность раздела, и чем вынш дисперсность материала, тем выше эта поверхность. [c.239]

    В процессе диспергирования возрастает свободная поверхностная энергия и энтропия, связанная с тепловым движением коллоидных частиц. При диспергировании твердых тел до порошкообразного состояния роль энтропийно -о фактора ничтожна. В случае превышения энтропии над свободной энергией, свя- анной с развитием поверхности, формирование коллоидной системы оказывается термодинамически вы10диым процессом и может протекать самостоятельно, особенно в дисперсных системах с газообразной и жидкой дисперсионной средой. [c.65]

    При формировании адсорбционно-сольватного слоя из жидкой фазы необходимо, чтобы энергия ММВ соединений, переходящих в слой, значительно превосходила энергию ММВ среды. Согласно правилу выравнивания полярностей Ребиндера, в слое концентрируется вещество, обладающее полярностью, промежуточной между полярностями веществ в ядре и дисперсионной среде раздела фаз. Так, на границе фаз асфальтены — парафины ароматические углеводороды хорошо взаимодействуют с поверхностью ядер ССЕ. Па следующих стадиях происходит рост размеров ССЕ. При достижении необходимой разности плотностей между исходной фазой и ССЕ, последние начинают перемещаться ио системе и формируют межфазный слой — поверхность разрыва — границы разделяющей фазы (подсистемы) со схожими свойствами. Поверхность разрыва представляет собой переходный слой— реальный объект, обладающий объемом. Внутри межфазного слоя в результате его разрушения происходит непрерывное изменение свойств от характерных для дисперсной системы до свойств новой фазы. В зависимости от степени искривления иоверхности ядер ССЕ различают макрогете-рогенные (плоская поверхность) и микрогетерогенные (искривленная поверхность) системы. По мере перехода от макро-гетерогенных систем к микрогетерогенным существенно увеличивается поверхность раздела и роль поверхностных явлений. При увеличении размеров коллоидных частиц происходит уменьшение их межфазной поверхности, в результате часть со- [c.123]

    Дисперсионная среда мангышлакских крекинг-остатков состоит в основном из высокомолекулярных углеводородов парафино-наф-теиового характера (50% на остаток), которые являются плохими пептизаторами для коллоидных частиц. Карбены, карбоиды находятся в остатке в виде механических примесей, т. е. такие крекинг-остатки представляют собой малостабильные двухфазные системы, При нагревании в связи со снижением вязкости дисперсионной среды остаток расслаивается на две фазы. Появление легких углеводородов в результате частичной деструкции высокомолекулярных парафинов также способствует снижению вязкости дисперсионной среды и одновременно ускоряет выпадение карбоидов и карбенов. [c.59]

    Теоретические и экспериментальные доказательства тепловой природы броуновского двпжения коллоидных частиц привели к фундаментальному выводу о том, что ультрамикрогетерогенные системы должны подчиняться тем же законам молекулярно-кинетической теории, каким следуют молекулярные системы (газы и растворы). Например, по уравнению (IV.28) можно рассчитать средние скорости движения и энергию коллоидной частицы любого размера, если она принимает участие в тепловом движении. [c.208]

    По данным того же автора и Н. А. Киселевой [42], катализатор выполняет свои функции и создает условия, определяющие направление и скорость реакции в течение индукционного периода окисления. Изучая причину изменения цвета окисляемого керосина в присутствии нафтената марганца, переходящего от коричневого к фиолетовому и далее к соломенно-желтому, авторы при помощи электронного микроскопа наблюдали разрушение коллоидных частиц катализатора с образованием кристаллов, максимальное количество которых образуется в момент перехода окраски раствора в соломенно-желтый цвет. Таким образом, квазигетеро-генный катализатор становится явно гетерогенным. Период первичного состояния катализатора соврадает с периодом индукции. Участие катализатора окисления распространяется лишь на короткий промежуток реакции. Поэтому, как указывают авторы, представление о катализаторе в процессе окисления как о системе, постоянно находящейся в зоне реакции окисления, можно считать устаревшим. Катализатор ускоряет лишь образование первичных радикалов, являющихся инициаторами цепного процесса окисления. [c.290]

    При рассмотрении сил взаимодействия мея ду коллоидными частицами в пенах или эмульсиях удобно использовать элементарную модель, введенную Дерягиным. Согласно модели, взаимодействие возникает при наличии дополнительной силы или расклинивающего давления, нанравленного под прямым углом к плоскости жидкой пленки. Эта сила является поверхностной силой второго рода в отличии от иоверхностного натяя ения, которое действует вдоль плоскости раздела фаз и называется поверхностной силой первого рода. Такая трактовка не единственная, но она удобна но отношению к удельной поверхностной энергии как переменной величине, зависящей от свойств системы (Дерягин и Щербаков, 1961). [c.80]

    С помощью первого метода исследуют некоторые круиподисперс-ные системы, такие как эмульсии и суспензии, вторым — растворы несложных молекул и некоторых полимеров в свете диэлектрической теории полярных молекул. Однако для систем, являющихся промежуточными (со средним размером частиц), таких как микроэмульсии, солюбилизированные системы воды в растворителях, коллоидные дисперсные системы и растворы полимеров, до сих пор не имеется общеирипятьхх методов определения диэлектрических свойств. [c.325]

    В дисперсных системах при достаточно малых размерах частиц дисперсной фазы обнаруживается их участие в тепловом движении. Изучение коллоидных частиц, занимающих промежуточное положение между молекулами, находящимися в постоянном движении в истинных растворах, и крупными структурными образованиями в высокоструктурированных объектах, практически неподвижными в отсутствие внешнего воздействия, показало возможность приложения к коллоидным частицам основных закономерностей для молекул, известных из молекулярно-кинетической теории. Принципиальным выводом стало то, что между молекулярно-кинетическими свойствами истинных растворов и коллоидных систем нет качественной разницы, а различия носят только количественный характер. [c.18]

    Броуновское движение возникает вследствие внутренних взаимодействий в дисперсной системе, а не внешних факторов. Так, крупные частицы, во всяком случае с размерами, намного превышающими коллор дные, совершают монотонные колебания вокруг некоторого условного центра. С понижением размера частиц частота их колебаний повышается. По достижении некоторого размера (соизмеримого с размерами коллоидных частиц) частицы начинают беспорядочно, изменяя направление, перемещаться в объеме дисперсионной среды. [c.21]

    Высокомолекулярные вещества, растворенные в хорошем растворителе образуют термодинамически обратимые, молекулярные, гомогенные, то есть однофазные, агрегативно устойчивые системы. Однако, в плохо растворяющей или в нерастворяющей среде высокомолекулярные вещества образуют дисперсные системы со свободными поверхностями раздела, поведение которых соответствует типичным микрогетерогенным дисперсным системам. Так, макромолекулы медленно диффундируют в растворе, не проникают через полунепроницаемые мембраны. Однако по некоторым свойствам растворы высокомолекулярных соединений имеют сходство с коллоидными системами, в связи с чем растворы высокомолекулярных соединений иногда называют молекулярными коллоидами. Так, например, размеры макромолекул соизмеримы, или даже превышают размеры коллоидных частиц. Впрочем, эта соизмеримость проявляется лишь по длине макромолекул, поперечные же их размеры соответствуют размерам обычных молекул. [c.28]


Смотреть страницы где упоминается термин Коллоидные частицы системы: [c.334]    [c.139]    [c.190]    [c.196]    [c.77]    [c.279]    [c.99]    [c.91]    [c.91]    [c.15]   
Аналитическая химия (1973) -- [ c.85 , c.86 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

КОЛЛОИДНОЙ системы, свободная отталкивания частиц

Коллоидно-дисперсные системы Строение коллоидных частиц

Коллоидные растворы и другие дисперсные системы. Использование коллоидного графита в вакуумной технике. Устойчивость коллоидных растворов. Роль адсорбции. Заряд частиц. Электрокинетические явления. Использование их для приготовления оксидных катодов и в других целях. Понятие о гелях. Коагуляция коллоидов

Коллоидные системы между частицами

Коллоидные системы размеры частиц

Коллоидные частицы

Оптические свойства коллоидных систем Рассеяние света коллоидными частицами

Особенности определения размеров частиц дисперсной фазы в жидких коллоидных системах

Получение коллоидных систем и определение их концентрации и среднего размера частиц

Проблема аморфной или кристаллической природы коллоидно-дисперсных частиц III систем III

Системы коллоидные

Системы крупных частиц растворы макромолекулярных соединений и коллоидные системы

Строение коллоидных частиц и электрические свойства коллоидных систем

Ультрамикрогетерогенные системы (коллоидные растворы) я Строение коллоидных частиц

Форма частиц и оптические свойства коллоидных систем

Электрические свойства коллоидных систем Заряд и потенциал коллоидных частиц



© 2025 chem21.info Реклама на сайте