Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительные потенциалы ионов плутония

    Окислительно-восстановительный потенциал. Ионы различной валентности одного металла при экстрагировании подобны различным элементам. Одним из примеров может служить различие между Се + и (см. табл. 6. 2). Другой пример — поведение Ри + и РиО +, которые легко экстрагируются раствором трибутилфосфата в керосине, в то время как Ра + имеет очень низкий коэффициент распределения 6]. Следовательно, изменяя окислительно-восстановительный потенциал водной фазы, можно изменять доли элемента в различных валентных состояниях, а следовательно, и его коэффициент распределения. При помощи такого метода плутоний извлекается из водного раствора, содержащего плутоний и уран в каскадах С VI В рис. 6. 5, иллюстрирующего пурекс-процесс. Добавлением к водному реэкстрагирующему раствору, подаваемому в каскад С, например, солей двухвалентного железа, восстанавливают плутоний до Ри +, который легко реэкстрагирует в воду. Уран остается в виде иО +в органической фазе., [c.215]


    Дальнейшее окисление плутония выше четырехвалентного состояния не происходит вследствие низкого окислительно-восстановительного потенциала ванадата. Определению, по-видимому, не должны мешать также ионы Сг2+, Мп +, РЬ +, Се + и др., не окисляющиеся ванадатом. Но проверка влияния указанных ионов не проводилась. [c.193]

    В соответствии с основными валентностями плутония его ионы в растворе существуют в четырех состояниях окисления Ри +, Ри +, PuO (валентность -)-5) я РиО " (+6). Нормальный электродный потенциал сро=—2,07 В окислительно-восстановительный потенциал двух реакций окисления плутония в зависимости от температуры  [c.628]

    Вследствие высокого окислительно-восстановительного потенциала пары Ог— НгО ионы низших валентных состояний урана, нептуния и плутония оказываются неустойчивыми по отношению к кислороду. Однако скорости окисления различных ионов заметно отличаются. Трехвалентный уран окисляется кислородом очень быстро, тогда как трехвалентный плутоний сравнительно устойчив на воздухе. Четырехвалентный плутоний, по-видимому, практически не окисляется кислородом, Мр (IV) окисляется очень медленно, а и (IV) окисляется с заметной скоростью. [c.194]

    Значения окислительно-восстановительных потенциалов различных плутониевых пар указывают на то, что в кислых растворах в заметных концентрациях могут существовать в равновесии ионы всех степеней окисления плутония. Некоторые из них подвергаются реакциям диспропорционирования, что обусловлено близостью потенциалов различных окислительно-восстановительных систем плутония [30, 59,169—170,176,177,183—185]. Для растворов чистого Ри (IV) потенциал пары Ри (III) — Ри (IV) очень высок, а потенциал пар Pu(IV) — Pu (V), Pu (IV) — Pu (VI) очень низок. Pu(V) неустойчив в кислых растворах (см. ниже), поэтому Рп (IV) в слабокислых растворах диспропорционирует в основном по реакции  [c.117]

    Окислительно-восстановительный потенциал пары Pu(III) — Pu(IV) в 1 М НС1 равен 0,97 в в 1 Ai H IO4—0,98 в и в 1 М H2SO4 — 0,75 в. Плутоний(III) можно титровать сульфатом церия (IV), используя в качестве индикатора комплекс железа(II) с 1, 10-фенантролином [32]. Для фотометрического определения плутония (IV) используют такие реагенты, как ализаринсульфонат натрия [33], который дает комплекс, имеющий при 530 ммк и pH 3 8=9870, торон (е = 11 ООО при 540 ммк) [34] и арсеназо I [35], который образует комплекс 1 1с е=21 ООО при 580 ммк в 0,1 М азотной кислоте. Pu(III) (при pH 5,5—6,5), Pu(IV) и Pu(VI) (при pH 8,5—9,5) также образуют с арсеназо I окрашенные комплексы. Ни один из этих реагентов не является достаточно избирательным, так что необходимо предварительное отделение мешающих ионов металлов, а также некоторых анионов. [c.347]


    Хотя хлоридное комплексообразование плутония (IV) было обнаружено спектрофотометрическим методом, бесспорно наиболее надежные результаты по комплексообразованию Ри с X л о р и д-и оном из имеющихся в настоящее время получены Рабидо [78]. Величины равновесных констант для комплексообразования Ри (и РиО ) с хлорид-ионом (а также с нитрат-и сульфат-ионами) получены на основании влияния этих анионов на окислительно-восстановительные потенциалы пар. Эта работа выполнена тщательно и подробно. Так как влияние комплексообразования на величину измеряемого формального потенциала указывает только на различие в устойчивости комплексных ионов, степень связи в комплекс одного из ионов должна быть определена независимым методом. Так было сделано при исследовании комплексообразования плутонил-иона с хлоридами. По влиянию хлорид-иона на потенциал пары плутоний (П1)/плутоний (IV) (а также по влиянию хлорид-иона на другие пары) была определена константа ассоциации комплекса для реакции [c.336]


Смотреть страницы где упоминается термин Окислительно-восстановительные потенциалы ионов плутония: [c.339]    [c.14]    [c.60]    [c.276]    [c.323]   
Аналитическая химия плутония (1965) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный потенциал

Окислительные потенциалы окислительно-восстановительных

Плутоний

Плутоний окислительные потенциалы

Потенциал окислительно-восстановительны

Потенциал окислительный



© 2025 chem21.info Реклама на сайте