Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые свойства волновых функций водорода

    Для описания свойств электрона используют волновую функцию, которую обозначают буквой (пси). Квадрат ее модуля вычисленный для определенного момента времени и определенной точки пространства, пропорционален вероятности обнаружить частицу в этой точке в указанное время. Величину 1)з называют плотностью вероятности. Наглядное представление о распределении электронной плотности атома дает функция радиального распределения. Такая функция служит мерой вероятности нахождения электрона в сферическом слое между расстояниями г и (л + с1г) от ядра. Объем, лежащий между двумя сферами, имеющими радиусы г и (г + йг), равен 4пг с1г, а вероятность нахождения электрона в этом элементарном объеме может быть представлена графически в виде зависимостей функции радиального распределения. На рис. 1.2 представлена функция вероятности для основного энергетического состояния электрона в атоме водорода. Плотность вероятности гр достигает максимального значения на некотором конечном расстоянии от ядра. При этом наиболее вероятное значение г для электрона атома водорода равно радиусу орбиты ао, соответствующей основному состоянию электрона в модели Бора. Различная плотность вероятности дает представление об электроне, как бы размазанном вокруг ядра в виде так называемого [c.13]


    Для уяснения физического смысла квадрата волновой функции рассмотрим рис. 5, на котором изображен некоторый объем вблизи ядра атома водорода. Плотность размещения точек на рис. 5 пропорциональна значению в соответствующем месте чем больше величина тем гуще расположены точки. Если бы электрон обладал свойствами материальной точки, то рис. 5 можно было бы Рис. 5. Электронное облако получить, многократно наблюдая атом атома водорода водорода и каждый раз отмечая место- [c.72]

    Задачей квантовой механики является вычисление волновой функции молекулярной орбитали на основании волновых функций атомных орбиталей. По волновой функции молекулярной орбитали можно вычислить такие основные свойства новой связи, как межатомные расстояния, энергию связи, частоту спектральных линий и т. д. Вследствие ряда непреодолимых математических трудностей эта задача может быть решена точно только для некоторых простых молекул, и прежде всего — для молекулы водорода. Расчетные значения энергии связи и расстояния между атомами совпадают с экспериментальными данными. В случае более сложных молекул прибегают к приближенным методам [c.95]

    Теперь следует рассмотреть свойства симметрии координатной части ядерных волновых функций. Если ориентация линии, соединяющей центры обоих ядер, выражается с помощью обычных полярных координат ф и Ь (см. рис. 13, стр. 58), то очевидно, что обмен ядер местами эквивалентен замене 0 на 0-]-тт и О на тт — 6. В гл. IX мы рассмотрели в общей форме некоторые свойства двухатомных молекул и отметили, что, так как сила, действующая между двумя атомами, направлена вдоль линии, соединяющей их центры, движение этих атомов имеет много общего с движением электрона в атоме водорода. В частности, волновая функция может быть написана в форме / Фв, где Н — функция только г, расстояния между атомами, а > и О — соответственно функции двух переменных ф и 0. Из предшествующего изложения ясно, что симметричные свойства такой волновой функции должны зависеть от множителя Ф0, и было установлено, что она симметрична, если вращательное квантовое число / является четным, и антисимметрична, если оно нечетно. Мы не будем стараться дать подробное объяснение этого факта, но можем обратить внимание на аналогичный, но более простой случай. Если бы существовала молекула, в которой вращение. могло бы происходить только в одной плоскости, то, введя приведенную массу, ее можно было бы рассчитывать как плоский ротатор типа, рассмотренного в гл. IV. Перестановка ядер должна была бы соответствовать замене х 4.4 на 7,+ ТГ, и рассмотрение рис. 12 показывает, что в этом случае волновые функции симметричны, если вращательное квантовое число четно, и антисимметричны, если оно нечетно. [c.151]


    Описанные представления, согласно которым электрон обраш ается вокруг ядра, подобно Луне, вращающейся вокруг Земли, оказались очень наглядными и удобными. Теория Бора быстро получила признание и вошла в школьные учебники. Однако скоро она встретилась с большими трудностями, особенно при объяснении спектров атомов более сложных, чем водород, содержащих много электронов. Кроме того, как уже отмечалось, движение микрочастиц коренным образом отличается от движения больших тел и в определенной степени характеризуется волновыми свойствами. Поэтому представления теории Бора о строго определенных траекториях движения электрона требовали пересмотра и уточнения. Это вызвало появление новой науки о движении микрочастиц — волновой механики, показавшей, что, поскольку электрон обладает свойствами не только частицы, но и волны, невозможно точно определить пи положение электрона в данный момент времени, ни его траекторию. При заданной энергии электрона можно определить только вероятность его пребывания. в данной части объема атома. Иными словами, электрон как бы размазан , или распределен в некотором пространстве. Это распределение для каждого электрона, описываемое некоторой функцией, называется атомной орбиталью. Для электрона в состоянии 1 распределение характеризуется шаровой симметрией. На рис. 66 представлена зависимость вероятности присутствия электрона в шаровом поясе радиуса г от величины г. Из рис. 66 видно, что наибольшая вероятность нахождения электрона приходится па оболочку с радиусом Го. Эта величина совпадает с радиусом первой орбиты в атоме водорода, по теории Бора вычисляемым по уравнению (ХП1-5) и рав- [c.245]

    Из вида волновой функции (5) ясно, что электронная плотность конечна повсюду, где конечны ж, у и г она имеет максимальное значение в непосредственной близости от ядра и уменьшается до Есуля только если какая-нибудь из координат х, у, 2 становится бесконечной. Это последнее свойство обычно для периферических областей з любых стационарных распределений электронного заряда объем, занимаемый электронами, связанными с атомом, ионом или молекулой, никогда не может быть установлен точно. Можно, однако, вычислить объем, соответствующий некоторой доле общего электронного заряда у атома водорода, например, в его основном состоянии сферы радиусов 1, 2, 3, 4 и 5в (ядро в качестве центра) содержат 0,323 0,762 0,938 0,986 и 0,997 общего электронного заряда. [c.13]


Смотреть главы в:

Квантовая химия  -> Некоторые свойства волновых функций водорода




ПОИСК





Смотрите так же термины и статьи:

Водород свойства

Волновые функции

Свойства волновые

Функция волновая Волновая функция



© 2025 chem21.info Реклама на сайте