Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация из раствора. Образование сферолитов

    При кристаллизации полимеров из концентрированных растворов или из переохлажденных расплавов образуется другая разновидность надмолекулярной структуры —сферолит (рис. VI. 12). Это наиболее распространенный тип структуры полимеров. Сфе-ролиты представляют собой трехмерные поликристаллические образования, обладающие сферической симметрией относительно центра. Они построены из множества фибриллярных или пластинчатых кристаллов, расходящихся по радиусу из одного общего центра. Размеры сферолитов в поликристаллических полимерах обычно лежат в пределах 10—10" мкм. Образованию сферолитов способствует высокая вязкость расплава или большое пересыщение раствора. В этих случаях одновременно возникает большое число зародышей кристаллизации и дальнейший их рост происходит в радиальных направлениях. Как правило, зародышами кристаллизации служат маленькие кристаллики, образовавшиеся по механизму складывания цепей. Далее они растут таким образом, что ось с кристалла, совпадающая с направлением осей макромо-,иекул, располагается перпендикулярно радиусу сферолита или под [c.175]


    При кристаллизации из расплава или концентрированного раствора полимера наиболее общим типом вторичного кристаллического образования является сферолит, имеющий кольцевую или сферическую форму и достигающий гигантских размеров - до 1 см. В радиальных (сферических) сферо-литах каркас формируется из ленточных кристаллических образований, направленных от центра к периферии. Оси макромолекул в кристаллических областях направлены перпендикулярно радиусу сферолита. В кольцевых сферолитах каркас образован из лент, свернутых в виде спирали. Характерным признаком наличия сферолитов является так называемый мальтийский крест , хорошо различимый в поляризационном микроскопе. [c.146]

    Наименее изучена в настоящее время проблема связи между идеальными монокристаллами, растущими из разбавленных растворов и достаточно полно охарактеризованными, и более сложными структурами, обнаруживаемыми в образцах, закристаллизованных из расплава. Однако именно последние представляют наибольший практический интерес и именно этим структурам в настоящее время посвящено большинство исследований по кристаллизации полимера. На рис. 17 приведена схема, цель которой объединить большую часть из описанных выше кристаллических структур. Эта схема будет служить рабочей моделью в последующем изложении. Последняя работа Палмера и сотр., в которой использованы методы химического воздействия на полимеры для выделения структурных элементов из блоков полимеров, в значительной степени подтверждает предложенную схему. Но ввиду недостаточности наших знаний о морфологии полимеров эту схему следует рассматривать только как приблизительную. Существенно, что основной упор делается на сферолит или на его предшественников как на доминирующие структурные образования. Хотя сферолит может состоять из таких структурных элементов, как фибриллы или кристаллит, в любых кинетических исследованиях кристаллизации полимеров именно зарождение и рост сферолитов являются стадией, определяющей скорость процесса. [c.52]

    Ламелярный (или пластинчатый) механизм кристаллизации наблюдается, например, для полиэтилена (рис. 19), однако единичные правильно ограненные монокристаллы образуются лишь при кристаллизации в разбавленных растворах. В других условиях ламели входят как составные части в более сложные кристаллические образования фибриллы, сферолиты, дендриты, зерна и др. Морфология сложных кристаллических образований зависит от условий процесса кристаллизации. В отсутствие внешних деформаций или при очень малых удлинениях (до 20%) кристаллизация идет в основном по сферолит-ному механизму. Образование менее правильных, чем монокристаллы, сферолитов в условиях высокой вязкости среды и малой подвижности первичных элементов кристаллических структур является кинетически более выгодным. [c.46]


    Сложные структуры в процессе кристаллизации поликарбонатов на основе бисфенола А были получены из раствора различными методами [5]. При этом обнаружены ленты, фибриллы, глобулы и сферолиты. Существует мнение, что возникновение фибрилл следует рассматривать как промежуточную стадию образования сфероли тов, видимых в обычном микроскопе. Позднее была показана возможность образования сферолитов при медленном испарении растворителя из раствора поликарбоната на основе бисфенола А [6]. В этой же работе впервые подробно рассмотрены условия и возможность кристаллизации поликарбонатов, полученных поликонденсацией бисфенолов различного строения с фосгеном. Исходные бисфенолы являются производными ди(4-окси-фенил) метана и различаются заместителями у центрального углеродного атома или в ароматическом ядре При этом можно выделить, в зависимости от способно сти к кристаллизации, три группы полимеров. Первая группа поликарбонатов способна образовывать лишь структуры с ближним порядком (аморфное состояние), для второй группы характерно газокристаллическое со- [c.104]

    Характерной чертой полимеров является возникновение сферо-литов. Сферолит — это кристаллическое образование округлой формы. В расплаве размер его может достигать сотен микрон. Из растворов некоторых полимеров получают сферолиты диаметром до 1 см. Сферолит построен из ламелей, растуш,их из единого центра, от одного зародыша кристаллизации (рис. 12.4, а). Ламели и в [c.175]

    Из факторов, относяш,ихся к самим полимерам, на растрескивание влияют следуюш,ие Наличие полимергомологов, что приводит к разной локальной степени набухания или растворения в полимере, а это, в свою очередь, обусловливает концентрацию напряжений и образование треш ин. В кристаллических полимерах действие растворителя локализуется прежде всего по границам сфероли-тов, а иногда и внутри сферолитов между лучами. Это связано с тем, что при кристаллизации в сферолитах упорядочиваются структурные единицы одинакового строения, например в линейных полимерах — линейные молекулы. В этом случае молекулы, содержаш,ие разветвления и посторонние группы, возникающие в результате окисления и других процессов, автоматически выталкиваются из кристаллов и образуют аморфную или менее упорядоченную фазу между сферолитами. Таким образом происходит концентрирование дефектного материала, по которому начинается процесс разрушения. Неодинаковая скорость воздействия на кристаллические полимеры физически или химически агрессивных сред наглядно проявляется при травлении полимеров аналогично металлам. Опыты по травлению показывают, например, что при действии на полиэтилен концентрированной HNO3 с большей скоростью и в первую очередь растворяется дефектный менее кристалличный материал. В связи с этим сопротивляемость растрескиванию увеличивается при сужении кривой распределения за счет низкомолекулярной части и при увеличении молекулярного веса полимера. Аналогичные данные имеются и для поликарбоната Склонность к растрескиванию уменьшается с уменьшением внешних и внутренних напряжений, а также с увеличением степени кристалличности, т. е. с ростом плотности. Последнее наблюдалось на полиамидах в кислотах а также на полиэтилене в растворе ПАВ Однако одновременное увеличение набухания с ростом степени кристалличности, например в системе фторопласт — керосин приводит к уменьшению долговечности. Сопротивляемость растрескиванию снижается с ростом [c.77]


Смотреть страницы где упоминается термин Кристаллизация из раствора. Образование сферолитов: [c.173]   
Смотреть главы в:

Полимерные смеси и композиты -> Кристаллизация из раствора. Образование сферолитов




ПОИСК





Смотрите так же термины и статьи:

Растворов кристаллизации

Растворы Образование растворов

Растворы образование



© 2025 chem21.info Реклама на сайте