Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликарбонат, кристаллизация при

    Поликарбонат обладает частично кристаллической структурой. При длительной термической обработ.че возможна последующая кристаллизация, которая в отличие от полиэтилена и полиамидов не вызывает изменения внешнего вида изделия и стабильности его размеров. [c.123]

    Поликарбонаты, получаемые на основе дифенилолпропана, так же как и ряд других типов поликарбонатов, являются кристаллизующимися полимерами. Указанный тип поликарбоната, кристаллизация которого изучена рентгеноструктурным методом, образует ромбический тип кристаллической решетки с параметрами а == 11,9 б = 10,1 и в = 21 ,5. Элементарная ячейка поликарбоната содержит 8 химических звеньев. Теоретически вычисленная плотность кристалла составляет 1,3, в то время как обычный [c.525]


    Чистота БФА, получаемого с использованием серной кислоты в качестве катализатора, достаточна для производства ФС, однако для получения эпоксидных смол и особенно поликарбоната необходима дополнительная очистка продукта либо перекристаллизацией из толуола, либо кристаллизацией в виде аддукта БФА — фенол. [c.30]

    Результаты многочисленных исследовательских работ показали, что ароматические поликарбонаты по физическим свойствам, морфологии и способности к кристаллизации значительно отличаются от других термопластичных полимеров. Присутствие чередующихся ароматических циклов с четвертичным углеродным атомом между ними, соединенных связью —О—СО—О—, обусловило необычную жесткость макромолекул поликарбоната в сочетании с эластичностью поликарбонатных цепей. [c.5]

    При рассмотрении способности смешанных поликарбонатов к кристаллизации следует учитывать строение исходных бисфенолов. При этом возможны три случая  [c.108]

    Рентгеноструктурный анализ позволяет оценить объемную долю полимера, находящегося в упорядоченном состоянии. Для промышленных изделий она составляет 10—40%. Кристаллизация поликарбоната ниже температуры стеклования (149°С) замедляется до такой степени, что молекулярная упорядоченность, возникшая в процессе переработки, остается почти неизменной в интервале температур от —100 до +149°С. При комнатной температуре полимер находится в стеклообразном состоянии. Для того чтобы получить поликарбонат с высокой степенью кристалличности, необходимо увеличить подвижность макромолекул в твердом состоянии. Этого можно достигнуть в результате выдержки полимера в течение длительного времени при температуре выше тем- [c.103]

    Симметричное расположение заместителей у центрального атома углерода является необходимым условием для возникновения высокого молекулярного порядка в поликарбонатах. Наличие заместителей большого объема по месту центрального атома углерода или введение последнего в насыщенный алифатический цикл препятствует протеканию процессов кристаллизации. Присутствие в макромолекуле поликарбонатов таких громоздких заместителей приводит к стерическим препятствиям в образовании плотной молекулярной упаковки. Поэтому, несмотря на замедленное испарение растворителя в течение 72 ч, поликарбонаты на основе таких бисфенолов, как 2,2-ди (4-оксифенил) бутан, ди(4-оксифе-нил) фенилметан, 1,1-ди(4-оксифенил)циклогексан, получить в кристаллическом состоянии не удалось. При замещении атомов водорода в бензольных кольцах на группы СНз, как правило, кристаллизации не наблюдается. Введение четырех атомов галогена в ароматическую часть мономерного звена, при условии сохранения симметрии в алифатической части, приводит к возникновению газокристаллического состояния, тогда как присутствие двух атомов галогена не препятствует возникновению дальнего порядка в расположении полимерных цепей. [c.105]


    Пленки из поликарбоната можно упрочнить холодной вытяжкой. При растягивании образца вдвое предел прочности пленки возрастает на 100%. Пленки и волокна из поликарбоната обладают высокой атмосферо-и водостойкостью, сохраняют первоначальную прочность и окраску, несмотря на длительное выдерживание при 140—160. Они не разрушаются под действием кислот и окислительных сред, но мало устойчивы к растворам щелочей и аминов. Длительное выдерживание пленки в метиловом спирте придает ей хрупкость. Поликарбонат растворяется в ароматических углеводородах, кетонах, сложных эфирах и галоидированных углеводородах. Пленки легко выдерживают тропические условия, длительное пребывание в кипящей воде, резкие смены механических напряжений. Ниже приведены прочностные характеристики пленки из поликарбоната, полученного из расплава с кристаллизацией и вытягиванием 1 4,7 [104]. [c.714]

    Очищенные растворы поликарбоната, содержащие более 30—40% полимера, могут быть использованы непосредственно только для получения пленок методом полива или для пропитки различных материалов. Во всех других случаях при переработке поликарбоната необходимо предварительно выделить его из раствора в твердом виде (порошок, гранулы). Для этого используется выпаривание растворителя, осаждение поликарбоната нерастворителем, экструзия, кристаллизация при охлаждении и др. [c.89]

    Макромолекулы поликарбонатов характеризуются большой жесткостью, ограниченным вращением ароматических ядер и наличием сравнительно больших участков, не содержащих полярных групп. Поэтому поликарбонаты имеют слабую тенденцию к кристаллизации, довольно высокие температуры стеклования, высокие вязкости расплавов. Вообще же способность поликарбонатов к кристаллизации зависит от их химического строения, молекулярного веса и, в некоторой степени, от молекулярно-весового распределения. [c.103]

    Пары бисфенолов третьей группы образуют смешанные поликарбонаты, очень медленно кристаллизующиеся. На рентгенограммах таких поликарбонатов не удается обнаружить пики, соответствующие кристаллическим полимерам. Таким образом, возможность кристаллизации смешанных поликарбонатов определяется как сходством структур бисфенолов, так и соотношением остатков последних в сополимерах. Структура поликарбонатов, способы и скорости их кристаллизации изучались различными методами. [c.109]

Таблица 1. Данные о кристаллизации поликарбонатов Таблица 1. Данные о кристаллизации поликарбонатов
    В смешанных поликарбонатах, образованных бисфенолами, относящимися к первой группе и имеющими близкие параметры кристаллической решетки, имеет место изоморфное замещение звеньев и наблюдается совместная кристаллизация звеньев при всех соотношениях исходных бисфенолов. Пары бисфенолов, образующие высококристаллические поликарбонаты, различающиеся по структуре, образуют смешанные поликарбонаты, в которых совместная кристаллизация звеньев происходит только при определенных соотношениях бисфенолов [14]. [c.108]

    Подтверждением этого является способность смешанных поликарбонатов к кристаллизации, которая может иметь место только в том случае, если замена одного основного звена другим не изменяет периода идентичности. [c.149]

    Зависимость температуры плавления смешанных поликарбонатов от состава носит другой характер [54]. В большинстве случаев кривые этой зависимости проходят через минимум и их форма описывается уравнением Флори. Температуры плавления понижаются в тех случаях, когда происходит совместная кристаллизация различных звеньев вследствие высокой способности к кристаллизации обоих гомополимеров. [c.149]

    Макромолекулы поликарбоната на основе бисфенола А имеют большую склонность к кристаллизации вследствие регулярности строения и сильного межмолекулярного взаимодействия. Вследствие этого при фракционном осаждении поликарбоната, особенно при осаждении низкомолекулярной части, наблюдается выпадение кристаллического осадка. Процесс кристаллизации препятствует разделению, поэтому целесообразно фракционировать поликарбонат при температуре выше температуры кристаллизации. Однако для поликарбонатов эта температура лежит очень высоко, что затрудняет эксперимент. Обычно фракционирование проводится в условиях, при которых кристаллизация по возможности должна быть подавлена, иначе хорошее разделение фракций не достигается. [c.192]

    Метод полива нз раствора позволяет получать прозрачные бесцветные пленки с широким интервалом толщин. Однако существует критическое значение толщины, выше которого получаются мутные непрозрачные пленки, Вызвано это кристаллизацией поликарбоната, в результате которой образуются кристаллиты, размер которых больше длины волны видимого света. Критическое значение толщины зависит от многих факторов. Большое влияние на нее оказывает средний молекулярный вес поликарбоната, молекулярно-весовое распределение и условия получения пленки. Замедление процесса кристаллизации и, следовательно, увеличение критической толщины пленки достигается применением поликарбоната очень высокого молекулярного веса или повышением скорости испарения растворителя в процессе отлива пленки. [c.221]


    Сополимеры поликарбоната на основе бисфенола А и других ароматических соединений менее склонны к кристаллизации. Прозрачные пленки из поликарбоната [c.221]

    После длительного экспонирования в атмосферных условиях на экструдированных листах поликарбоната появляются трещины ( серебро ), хотя его механические свойства почти не ухудшаются [17]. Появление серебра обусловлено кристаллизацией, что подтверждается рентгеноструктурным анализом, а также тем, что прозрачность листов восстанавливается после холодного прессования или при кратковременном нагревании ниже Т с (140—145°С). [c.239]

    Пластификация поликарбоната. При введении пластификаторов в поликарбонат значительно увеличивается скорость его кристаллизации [204]. Однако действие пластификаторов как промоторов кристаллизации пока еще только исследуется [205—207]. [c.165]

    Сферолитные структуры возникают во многих кристаллизирующихся полимерах они хорошо и легко получаются в полиолефи-нах, полиэфирах, полиамидах. Однако в некоторых полимерах с громоздкими и достаточно жесткими макромолекулами их образование затрудняется. Так, например, необходимы специальные условия, чтобы сферолиты возникли в поликарбонатах кристаллизация полимеров в форме сферолитов затруднена также в триэфирах целлюлозы, хотя в последнее время были получены сферолиты обоих морфологических типов в ряду простых и сложных триэфи-ров целлюлозы [6, 25, 26]. [c.192]

    Поликарбонаты, как и политерефталаты, отличаются высокой кристалличностью. Кристаллизация поликарбоната наблюдается только выше температуры стеклования, т. е. выше 150 . Степень кристалличности полимера п степень ориентации в расположении кристаллов оказывают решающее влияние на прочностные характеристики. При кристаллизации поликарбоната образуются мельчайшие кристаллические области, не нарушающие прозрачности полимера. Кристаллитные образования характеризуются стабильностью вследствие жесткости макромолекулярной цепи, в состав которой входит большое количество фениленовых групп [107], снижающих гибкость макромолекул. Молекулярный вес применяемых в технике поликарбонатов колеблется от 20 ООО до 80 ООО. [c.714]

    Переработка и применеиие. П. перерабатывают гл. обр. литьем под давлением (260+ 5 °С), значительно реже-экструзией (всего 5% П.). Важное преимущество П. перед др. термопластами (полиэтилентерефталатом, поликарбонатами, полисульфонамн) - хорошие технол. св-ва, связанные с высокой скоростью кристаллизации при низких т-рах формы (30-100°С) и высокой текучестью расплава. [c.615]

    Сложные структуры в процессе кристаллизации поликарбонатов на основе бисфенола А были получены из раствора различными методами [5]. При этом обнаружены ленты, фибриллы, глобулы и сферолиты. Существует мнение, что возникновение фибрилл следует рассматривать как промежуточную стадию образования сфероли тов, видимых в обычном микроскопе. Позднее была показана возможность образования сферолитов при медленном испарении растворителя из раствора поликарбоната на основе бисфенола А [6]. В этой же работе впервые подробно рассмотрены условия и возможность кристаллизации поликарбонатов, полученных поликонденсацией бисфенолов различного строения с фосгеном. Исходные бисфенолы являются производными ди(4-окси-фенил) метана и различаются заместителями у центрального углеродного атома или в ароматическом ядре При этом можно выделить, в зависимости от способно сти к кристаллизации, три группы полимеров. Первая группа поликарбонатов способна образовывать лишь структуры с ближним порядком (аморфное состояние), для второй группы характерно газокристаллическое со- [c.104]

    Аморфное состояние некристаллизующихся поликарбонатов обусловлено не жесткостью полимерной цепи, а невозможностью осуществления надлежащей плотности упаковки, т. е. отсутствием обязательного конформа-ционного условия кристаллизации [6]. Кинетика кристаллизации поликарбонатов на основе бисфенола А была изучена по скорости роста надмолекулярных образований с помощью электронного микроскопа [6], по величине инкубационного периода кристаллизации поликарбоната из растворов в смесях растворитель — осадитель при помощи нефелометра [7], дилатометрически по уменьшению удельного объема в течение длительного периода времени при 170—205° [8]. Было найдено, что заметная кристаллизация поликарбоната происходит при температуре не ниже 175°С. Максимальная степень кристалличности, определенная изотермической кристаллизацией при 205 °С, составляет 33%. Данные о кинети- [c.105]

    Пары бисфенолов, относящиеся ко второй группе и образующие кристаллические полимеры, близкие по структуре, приводят к получению смешанных поликарбонатов с пониженной степенью кристалличности, но это понижение степени кристалличности меньше, чем для различных структур гомополикарбонатов. В первом случае может происходить совместная кристаллизация вследствие наличия легко кристаллизующегося компонента и возможности замещения вторым компонентом структурной единицы в кристаллической решетке первого компонента во втором случае такой возможности нет. [c.109]

    При наличии заместителей 1В ароматическом ядре или у центрального атома углерода изменение температуры плавления определяется, в основном, взаимным влиянием следующих факторов изменением плотности цепи, плотности упаковки и суммарного межмолекулярного взаимодействия. Наиболее плотная упаковка полимера, при которой энтропия имеет минимальное значение, получается в результате уменьшения свободной энергии вещества. Так, процессы, связанные с повышением кристалличности поликарбонатов, при которых заметно повышается температура плавления, сопровождаются уменьшением энтропии полимера вследствие повышения упорядоченности системы. Энтальпия полимера также понижается, так как при кристаллизации выделяется определенное количество тепла. Так как энтропия плавления равняется разности энтропии расплавленного и твердого состояния (А5м=5 Мраспл—>5мтверд)> 3 ЭН-тальпия плавления, соответственно, разности энтальпий расплавленного и твердого состояния (АНм = [c.145]

    Исследование влияния системы растворитель — осадитель на фракционирование показало, что, например, хлороформ — ацетон и хлороформ — диоксан способствуют кристаллизации и не обеспечивают хорошего разделения, в то время как тетрахлорэтан — высшие парафины (С12—Сн) при среднем молекулярном весе образца полимера более 30 000 и метиленхлорид—метанол образуют гелеобразный осадок и обеспечивают хорошее разделение [41. Система метиленхлорид — метанол имеет еще то преимущество, что оба ее компонента легколетучи, что упрощает удаление этой смеси и сушку образца. Однако метанол способен оказывать химическое воздействие на раствор поликарбоната [34]. Переэтерификация монофункциональным спиртом вызывает статистический распад цепей  [c.192]

    При введении некоторых добавок в поликарбонат модуль упругости и разрушающее напряжение при растяжении пленок возрастают, а относительное удлинение при разрыве уменьшается. Это явление, обратное явлению пластификации, при которой уменьшаются модуль упругости и разрушающее напряжение при растяжении и увеличивается относительное удлинение при разрыве, называется антипластификацией. Антипластификаторами для поликарбоната могут служить соединения с Тс выше —50 °С, совместимые с поликарбонатом и содержащие полярные атомы — галоген, М, О, 3, два не-сопряжеиных цикла. Жесткость антипластифицирован-ных полимеров может быть повышена кристаллизацией. Антипластификаторами поликарбоната могут быть 2,5-диметилдифенилсульфон, метилабиетат и др. [160]. [c.275]


Смотреть страницы где упоминается термин Поликарбонат, кристаллизация при: [c.108]    [c.108]    [c.251]    [c.233]    [c.473]    [c.107]    [c.108]    [c.108]    [c.117]    [c.120]    [c.269]    [c.105]    [c.107]   
Физика макромолекул Том 2 (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поликарбонаты



© 2025 chem21.info Реклама на сайте