Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки типы вторичной структуры

    ВТОРИЧНАЯ СТРУКТУРА БЕЛКОВ. Водородные связи играют основную роль в определении конформации полипептидной цепи. Спираль — наиболее высокоорганизованный тип конформации отдельной полипептидной цепи] ъ-аминокислот. Она определяется пространственным расположением следующих атомов а-аминокислот, составляющих цепь 1) атома углерода карбонильной группы, 2) а-углеродного атома и 3) атома азота а-аминогруппы. Наиболее устойчивой иа различных типов спирали является [c.408]


    Вторичная структура белка — это пространственная укладка полипептидной цепи. Выделяют три типа вторичной структуры а-спираль, слоисто-складчатая спираль (или р-спираль) и коллагеновая спираль. [c.238]

    Если бы а-спираль была единственным типом вторичной структуры белков, то все они были бы жесткими палочковидными образованиями. Поскольку это не так, следует заключить, что а-спирали составляют лишь отдельные участки полипептидных цепей. Отклонение от а-спиральной структуры вызвано разнообразными факторами к ним относится содержание пролина, оксипролина и (или) валина в пептидной цепи. После образования пептидной связи амидный водород отсутствует в пролине и оксипролине, и эти аминокислотные остатки не могут участвовать в образовании водородных связей в а-спирали. Изопропильная группа валина, по-видимому, ослабляет а-спираль из-за стерического отталкивания. [c.408]

    Вторичная структура белка определяется как конформация полипептидной цепи. Среди наиболее важных типов вторичной структуры назовем следующие. [c.526]

    Существуют белки, имеющие другие типы вторичной структуры. [c.649]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    При увеличении влажности волоса до 5-7% происходит экстремальное увеличение его плотности, что обусловлено гидратацией пептидных и других полярных групп полимерного субстрата. При большем содержании воды в кератине развиваются пластификационные процессы, ослабляющие межмолекулярные контакты и повышающие сегментальную подвижность полипептидных цепей. Если бы кератин был представлен в полимерном субстрате только одним типом вторичной структуры - а-спиралью, - то все они были бы жесткими палочковидными образованиями. Но макромолекулы белка включают и участки статистических клубков, а также складчатые р-структуры (правда, доля последних невелика). [c.380]

    Но несмотря на те или иные недостатки каждого метода, все они находят широкое применение при изучении вторичной структуры белков и полипептидов. Относительная простота этих методов, возможность применения ряда из них для оценки степени спирализации белка в растворе и для оценки типа вторичной структуры делают их незаменимыми источниками информации о строении большинства белков. [c.112]

    Тем не менее признаки, по которым устанавливается наличие того или иного типа структуры, не оставляют в настоящее время возможностей для двузначного толкования экспериментальных данных и можно с уверенностью говорить о том или ином типе. вторичной структуры изучаемого фибриллярного белка. [c.544]

    Основные параметры большинства типов вторичных структур белков и нуклеиновых кислот были впервые установлены благодаря изучению волокон. Кроме того, та же самая теория может быть использована для анализа структур, образованных спирально расположенными белковыми субъединицами (такие структуры обнаружены в микротрубочках, актине, бактериофагах, вирусах), или целых слоев из субъединиц (подобные структуры найдены в мышцах, головках бактериофагов, в мембранах). [c.407]

    Для более глубокого понимания законов образования третичной структуры следует подчеркнуть, что полипептидная цепь не свертывается произвольно с образованием хаотичного (статистического) клубка. Анфинсен с сотр. [14] показал, что пространственная структура белков задана их первичной структурой. Иными словами, последовательность аминокислотных остатков в полимерной цепи кодирует строго определенный тип вторичной, третичной и высших структур белка. [c.12]

    В заключение необходимо остановиться еще на двух методах оценки вторичной структуры полипептидов и ряда белков электронной микроскопии и спектроскопии в инфракрасной области. Эти методы, соответственно, позволяют нам получить прямые доказательства существования а-спиралей и четко отметить тип вторичной структуры макромолекулы. Однако эти приемы исследования вторичной структуры существенно отличаются от вышеизложенных тем, что они не могут быть применены для изучения белков и полипептидов в растворе. [c.107]

    Другой тип вторичной структуры белков - [c.60]

    Что такое вторичная структура белков, за счет каких факторов она формируется и стабилизируется Какие типы вторичной структуры характерны для белков  [c.92]

    В соответствии с превалирующим типом вторичной структуры предложено [1J2] различать четыре класса белков (рис .1"0) I - полностью а-спиральные 17 - преимущественно содержащие р-структуру III - белки, в которых а- и р-структуры разделены вдоль полипептидной цеш (а+р), и IV - белки, в которых а- и р-структуры смешаны (а/р). [c.30]

    Иногда анализ последовательности аминокислот может привести к более определенным выводам о структуре белка. В настоящее время существуют методы, позволяющие с некоторой (хотя и не очень большой) степенью достоверности предсказывать расположение разных типов вторичной структуры вдоль цепи. Они подробно обсуждаются в гл. 5. [c.70]

    Рассмотрены три спектроскопических метода, с помощью которых можно получить разного рода информацию о структуре макромолекул. Оптически активные образцы обладают рядом свойств, среди которых наиболее удобным для исследования является круговой дихроизм (КД), т.е. способность по-разному поглощать лево- и правополяризованный свет. Существенное влияние на КД оказывает взаимодействие между соседними хромофорами, которое убывает с ростом расстояния между хромофорами приблизительно как и зависит от относительной ориентации хромофоров. Следовательно, КД особенно чувствителен к типу вторичной структуры белков и нуклеиновых кислот и протяженности структурных областей. Например, спектры КД а-спирали, /3-слоя и беспорядочной конформации четко различаются. Путем подгонки спектров белков к затабулирован-ным спектрам полипептидов с известной конформацией удается довольно надежно установить долю каждого из типов вторичной структуры в данном белке. [c.123]

    Два таких основных типа конфигураций белковых структур от-крыли и обосновали в сороковых годах двадцатого столетия Ляйнус Полинг и Роберт Кори. При этом было установлено, что более высокоорганизованным типом конформаций полипептидных цепей является правовращающая а-спираль. Именно а-сшфаль - основной и пшроко-раслространенный тип вторичной структуры белков. Спираль может быть правой или левой, но более устойчивой является правая а-спи-раль. [c.272]


    Другой тип вторичной структуры — -структура или складчатый листок. Б белках обнаружено два вида складчатых листков  [c.191]

    Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменений вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль—клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ф и у, свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинго-вые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков. [c.43]

    Пептидная связь является плоской (рис. 1-6), что налагает ряд ограничений на возможные типы вторичных структур белков. С другой стороны, все связи, включающие а-углеродные атомы, подвижны и могут образовывать множество разных структур. [c.17]

    В белках часто встречается тип вторичной структуры, называемой -структурой и характеризующейся тем, что в ней два участка полипептидной цепи (или в некоторых случаях две раз- [c.20]

    Первичная структура белка, т. е. последовательность аминокислотных остатков в полипептидных цепях, уже обсуждалась в разд. 14.3. Термин вторичная структура используют для обозначения тех простейших способов, при помощи которых полипептидные цепи скручиваются или складываются в молекулах белков. Наиболее важные вторичные структуры —а-спираль и два вида структуры, которую называют структурой типа складчатого слоя. (Третичная структура включает вторичные структуры и те фрагменты полипептидной цепи, которые соединяют один участок вторичной структурой с другим четвертичная струк- [c.428]

    В разд. 14.3 уже было отмечено, что причина, по которой все белки построены из ь-аминокислот, а не из смеси ь-и о-аминокислот, неизвестна. Тем не менее строение складчатого слоя и а-спирали, которые являются основными вторичными структурами белков, позволяет, по-видимому, понять это явление. Оба типа складчатого слоя имеют такую структуру, что одна из двух связей, соединяющих а-атом углерода с боковыми группами, направлена вовне почти под прямым углом к плоскости слоя и обеспечивает достаточное пространство для боковой цепи, между тем как другая связь лежит почти в плоскости слоя, где есть место лишь для атома водорода. В а-спирали, построенной целиком из ь - (или целиком из о -) аминокислотных остатков, боковые группы (при первых атомах углерода) расположены на расстоянии более 500 пм, тогда как в цепях, построенных из ь- и о-остатков, это расстояние составляет только 350 пм. Соответственно в первом случае структуры более устойчивы, так как для размещения больших боковых групп имеется больше места, чем в случае смешанных ь,о -цепей. Организмы, построенные исключительно из ь - (или о-) аминокислот (а также соответствующих углеводов и других веществ), к тому же несравненно проще, чем построенные на основе одновременно и ь- и в -форм. Дело в том, что ферменты, как правило, стереоспецифичны фермент, катализирующий реакцию с участием субстрата ь-ряда, не может катализировать ту же реакцию с участием субстрата о-ряда. Из этого следует, что существующим организмам достаточно только половины того числа ферментов, которое бы им потребовалось, если бы они были построены изь- и о-изомеров. Отбор же и-, а не в-аминокислот был, по-видимому, случайным. [c.435]

    Рентгеноструктурный анализ кристаллов позволил установить полную пространственную структуру ряда глобулярных белков. Было показано, что вторичная структура этих белков представлена главным образом а-спиралью и двумя типами складчатого слоя. При помощи рентгеноструктурного анализа можно установить и положение каталитически активного центра в молекуле фермента, соединенного с ингибитором. [c.443]

    В белках наиболее распространены три типа вторичных структур а-спирали, /З-слои и /3-изгибы. Все вместе они содержат более половины всех аминокислот белковой молекулы. В тех белках, в которых часто встречаются остатки пролина, а-спирали и 3-слои образуются редко вместо них могут формироваться спирали полипролинового типа. [c.146]

    Таким образом, авторы установили наличие двух типов вторичных структур для полиакриловой кислоты и ее солей, характер которых обусловлен конфигурацией длинноцепочечного иона 1) фибриллярные структуры, фибриллы которых иред-ставляют собой молекулярные цепочки, соедииеппые параллельной агрегацией в пачки, и 2) глобулярные структуры, образованные соединением молекулярных цепочек, свернутых в симметричные глобулы. Авторы высказали предположение, что рассмотренная картина агрегации и взаимного расположения цеией является более общей, так как глобулярные и фибриллярные структуры содержатся в биологических системах — природных полиэлектролитах и белках. [c.254]

    Молекулы ферментов, как и все белковые молекулы, построены из остатков а-аминокислот, соединенных пептидными связями. Линейную последовательность остатков в полипептидной цепи называют первичной структурой белка. Под вторичной структурой понимают характер спирализации или свертывания полипептидной цепи эта структура стабилизируется водородными связями между карбонильной и амидной группами пептидных связей. В результате дальнейшего скручивания молекулы, уже имеющей определенную вторичную структуру, возникает третичная структура, которая стабилизируется за счет различных взаимодействий между боковыми группами аминокислот. Наконец, под четвертичной структурой понимают крупные белковые агрегаты, состоящие из нескольких полипептидных цепей различного типа. Помимо полипептидной цепи, на которую приходится основная масса молекулы, белок может содержать также и другие ковалентно связанные с полипептидной цепью химические группировки, называемые простетиче-скими группами. [c.19]

    При анализе ряда глобулярных белков было установлено, что они имеют в растворе весьма компактные формы, размеры которых не сравнимы по величине с размерами, ожидаемыми для стержнеобразных а-спиралей сходного молекулярного веса. Гидродинамические данные и результаты светорассеяния указывают также, что пространственная конфигурация у белков этого класса более компактна, чем у беспорядочных клубков. Чтобы объяснить это кажущееся несоответствие, необходимо допустить, что молекулы глобулярных белков представляют собой сверхклубки , состоящие из коротких спиральных сегментов, разделяемых неспиральными зонами. Последние наделяют полипептидные цепи достаточной гибкостью, чтобы они могли свернуться в компактную глобулу, которая стабилизируется различного рода вторичными связями. Следовательно, в молекуле белка мы имеем как спиральные, так и аморфные участки. Что же касается синтетичесАх полипептидов, то здесь, как уже говорилось, конформация полипептидной цепи зависит от природы растворителя в одних вторичная структура этих соединений представлена спиральной формой, в других— беспорядочным клубком. Каким образом можно различить эти два типа вторичной структуры  [c.101]

    Системы водородных связей. Впервые о системах водородных связей как о реальности стало возможным говорить, когда Л. Полинг и сотр. на основе данных рентгеноструктурного анализа, предложили две модели вторичной структуры белков а-спирали и р-структуры [104,103]. В настоящее время системы пептидно-водородных связей, как их иногда называют, представленные в этих и некоторых других типах вторичных структур, считаются обычным элементом белков. Однако в связи с получением структурной информации с высоким разрешением (0,15—0,2 нм), появляется все больше сведений о системах водородных связей (или солевых мостиков ), состоящих из полярных аминокислот. Такие системы были обнаружены в целом ряде белков цитохром ах С551, Сг, с [84, 116, 128], термолизине [66], каталазе [99] и многих других. Необходимо также отметить, что подобные системы являются важным элементом структуры активных центров ферментов (т. н, системы передачи заряда [85]), а также наблюдаются при взаимодействии большого числа субъединиц, например, в вирусе табачной мозаики [33]. Детальный анализ некоторых из изученных систем, являющихся экспериментальным подтверждением формулируемой нами концепции систем сопряженных ионно-водородных связей, будет дан в следующей главе. [c.34]

    Спектры кругового дихроизма используют для тех же целей, что и спектры дисперсии оптического вращения, чтобы выяснить, какой тип вторичной структуры преобладает в мембранных белках. При интерпретации спектров кругового дихроизма возникают некоторые трудности, которые связаны в основном с негомоген-ностью мембранных суспензий, обусловливающей сглаживание спектральных кривых. Несмотря на то что доля спиральных участков в молекуле белка представляется на первый взгляд не самым информативным параметром, с помощью этих методов можно выяснить, осуществляется ли прямое влияние на мембранные структуры внешних факторов, если это влияние изменяет спи-рализацию белковых молекул. Эти изменения часто имеют место в тех случаях, когда наблюдается собственный конформационный сдвиг в молекуле белка или взаимодействие молекул белка друг с другом, изменяющее их конформацию. [c.73]

    РИС. 2.13. Распределение типов вторичной структуры в аденилаткиназе. Указаны области, которые, согласно предсказаниям различных теоретических методов, считаются /3-слоями, /3-изгибами или а-спиралями. На рисунке представлены также области вторичной структуры, определенные методом рентгеноструктурного анализа, и результаты, полученные при объединении всех теоретических подходов. Предсказания были сделаны до того, как стала известна структура белка. (G.E.Shultz et al.. Nature, 250, 140 (1974).] [c.72]

    На практике гораздо чаще по спектру КД пытаются определить х , Х(з и Хг> т.е. провести приближенный анализ вторичной структуры белка. Для этого проводят измерения при нескольких длинах волн (X,) и рещают систему уравнений вида (8.21). Минимально необходимое число длин волн равно трем, но лучше использовать гораздо больщий набор X, и применять метод наименьших квадратов или какую-либо иную статистическую процедуру для получения наиболее надежных значений долей каждого из типов вторичных структур Точность подобного расчета (даже в предположении, что все допущения верны) зависит от того, в какой степени базисные спектры [6ц], [в ] и [Хг1 являются линейно независимыми функциями. К счастью, как явствует из рис. 8.9, эти спектры достаточно сильно различаются. [c.79]

    Метод полуэмпирического расчета КД, с помощью которого удается обойти обе эти трудности, был предложен Д. Ветлауфером. Для построения базисных спектров здесь используются не полипептиды, а набор различных белков с известной пространственной структурой, что позволяет получить достаточно надежные значения х . Х(з и х . Зная экспериментальные спектры КД, можно, рещая систему уравнений вида (8.21), найти [ а( )]. [ е(> )] и [6г(Х)], т.е. аппроксимировать спектры каждого из типов вторичных структур в том виде, как они существуют в реальных белках. Эта процедура автоматически включает в себя усреднение как по длинам отдельных участков, так и по третичным взаимодействиям. На рис. 8.9 изображен типичный базисный набор спектров КД, полученный на основании измерений спектров белков. Адекватность этого экспериментально полученного набора можно проверить, если вычислить КД других белков, не использованных при расчете базисных спектров. В табл. 8.1 представлены типичные данные, полученные как методом Ветлауфера, так и с использованием базисного набора полипеп-тидных спектров. Видно, что оба метода дают достаточно хорощие результаты. [c.79]

    Многие полипептиды и белки исследовались с помощью рептгепос1руктурного анализа. При этом были подтверждены некоторые характерные особенности их структуры. Наиболее часто встречаются два типа организованной вторичной структуры, хотя нередко молекулы белков имеют более беспорядочное строение. В а-.форме полиамидная цепь свернута в спираль, в [c.301]

    Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной имформации, а также определяют синтез нужных белков в клетке я его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные неразветвлет1ые) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК- [c.441]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]


Смотреть страницы где упоминается термин Белки типы вторичной структуры: [c.274]    [c.102]    [c.16]    [c.209]    [c.17]    [c.193]    [c.61]    [c.637]    [c.532]   
Химия протеолиза Изд.2 (1991) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Белки аномальные, деградация типы вторичной структуры

Белок белки структура

Вторичная структура белка

Структура белка



© 2025 chem21.info Реклама на сайте