Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация механизм и кинетика

    В соответствии с данными табл. 3.3 при п = 3 можно полагать, что механизм зародышеобразования гомогенный, а рост кристаллических структур имеет преимущественно двухмерный характер. Обычно кинетика кристаллизации полимера может быть описана как брутто-процесс, так как разделить стадию зародышеобразования и собственно рост кристаллической фазы невозможно. [c.147]

    Каждому способу кристаллизации фторфлогопита соответствует своя кинетика процесса. В первую очередь должна быть изучена гетерогенная кристаллизация из больших масс расплава как основной способ получения кристаллов слюды. Кинетика изучает скорость процесса в тесной связи с его механизмом. Кинетика дает возможность предсказать, в течение какого времени и каким путем осуществляется процесс. [c.35]


    Для понимания многих технологических процессов переработки полимеров и физико-химических процессов, происходящих при эксплуатации полимерных изделий, необходимо рассмотреть современные взгляды на фазовые состояния полимеров. Они сложились на основе общих представлений о фазовых состояниях, разработанных применительно к низкомолекулярным веществам, и на основе данных о структуре полимеров, изложенных в гл. 3. В данной главе будут рассмотрены представления об агрегатных и фазовых состояниях полимеров, фазовых переходах, особенности упорядоченности полимеров, механизм, кинетика и термодинамика их кристаллизации, соотношение плотности упаковки макромолекул и свободного объема. [c.101]

    Несмотря на обилие экспериментальных данных о влиянии сеток разного типа на кристаллизацию, механизм действия поперечных связей еще до конца не выяснен. Не существует единой теории, позволяющей объяснить различие действия связей разного типа на параметры, описывающие кинетику кристаллизации вулканизатов.  [c.132]

    Приведенная выше (стр. 22) зависимость П1 от К и т основана на кинетике автокатализа, естественной для систем с матричным (типа кристаллизации) механизмом размножения. Величина /< определяется величиной К, являющейся функцией многих переменных величин. В простейшем случае /С,= [c.29]

    Исследованием течения реакций во времени занимается химическая кинетика. Под кинетикой в широком смысле понимают учение о скоростях различных процессов (химических реакций, растворения, кристаллизации, парообразования и т. д.) и их механизмах, определяющих скорость процесса. [c.229]

    Механизм и кинетика кристаллизации из газовой фазы принципиально не отличаются от таковых при кристаллизации из растворов или расплавов. Зарождение и рост кристаллов в газе происходит по тем же законам, что и в жидкости (см. выше). Как и в любом случае кристаллизации, для конденсации газа в твердую фазу он должен быть пересыщенным. [c.263]

    Первое и, возможно, до сих пор единственное систематическое исследование механизма и кинетики кристаллизации сплавов эвтектического типа было выполнено около 40 лет назад А. А. Бочваром [51]. Согласно А. А. Бочвару, эвтектическая кристаллизация происходит только в тех областях, где обе твердые фазы соприкасаются друг с другом и с раствором. [c.157]

    Взаимодействие полимерных цепей с поверхностью наполнителя, приводящее к уменьшению, их подвижности, должно изменять кинетику кристаллизации в случае кристаллизующихся полимеров. Наполнители могут оказывать влияние также и на процессы заро-дышеобразования при кристаллизации. Эффективность зародышеобразующего действия определяется природой как полимера, так и наполнителя. Исследование влияния малых добавок солей органических кислот, использованных в качестве искусственных заро-дышеобразователей,-на кристаллизацию показало [118—124], что они приводят к изменениям надмолекулярной структуры полимера, так как с изменением концентрации зародышеобразователей изменяются условия кристаллизации и процесс протекает с большей скоростью. Механизм действия добавок заключается в том, что на поверхности твердых частиц зародышеобразователя в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. Такие упорядоченные области сохраняются на поверхности и при температурах, при которых полимер переходит в расплав, когда в его объеме гомогенные центры кристаллизации полностью разрушаются. При достаточно большой концентрации добавок число гетерогенных центров на их поверхности значительно превосходит число гомогенных центров, которые возникают в объеме в ходе кристаллизации. Увеличение числа центров кристаллизации приводит к увеличению общей скорости кристаллизации и уменьшению размера сферолитов (наличие добавки не влияет на скорость линейного роста сферолитов). [c.63]


    А. Ф. Полак, разрабатывающий теоретические основы технологии бетона, показал [114—117, 145], что обоснованное управление процессом кристаллизации, исключающим предварительные напряжения при срастании кристаллов, могло бы привести к увеличению прочности бетона в пять — восемь раз. Вместе с тем разработка методов управления свойствами дисперсных структур, независимо от их назначения, теснейшим образом зависит от глубокого понимания механизма гидратации и структурообразования. В этом направлении и развивались наши исследования, отправной точкой для которых послужило открытие И. Г. Гранковским [146, 147] четырех стадий кинетики структурообразования...... [c.41]

    Кристаллизация из пара через слой жидкости. Исследования кинетики роста НК и пленок с одновременным использованием газовой и жидкой фаз немногочисленны. Все они в основном сводятся к выявлению лимитирующих стадий процесса, к экспериментальному определению зависимости вида V (ЬТ). Так, например, при осаждении германия через слой расплавленного раствора германия в олове оказалось, что лимитирующей стадией являются процессы на границе расплав—кристалл и что скорость роста пленки пропорциональна 8Ту. Следовательно, вероятнее всего здесь реализуется дислокационный механизм. [c.485]

    Книга посвящена вопросам изучения структуры, термодинамики и свойств концентрированных и насыщенных растворов электролитов и неэлектролитов. Особое внимание уделяется вопросам кристаллизации. Подробно рассматриваются механизмы и кинетика указанных процессов. Анализируются теоретические концепции и обсуждаются экспериментальные результаты по исследованию структуры жидкости, кластеров и нуклон в растворах электролитов, жидких кристаллов и т.д. [c.406]

    И. КИНЕТИКА И МЕХАНИЗМ КРИСТАЛЛИЗАЦИИ ЦЕОЛИТОВ [c.343]

    Исследования показывают, что и природа источника углерода оказывает существенное влияние на кристаллизацию алмаза. Однако долгое время изучение этого вопроса носило односторонний характер. Главным образом, делались попытки увязать различные физико-химические особенности графитов с технологическими показателями процесса выращивания алмаза (степень превращения графита в алмаз, распределение полученных кристаллов по фракциям, качество конечного продукта и т. д.). Очевидно, что данный подход не позволял вскрыть механизм влияния природы источника углерода, в частности, на этапе стационарного роста образовавшихся зародышей. Было установлено, что одним из факторов, влияющих на кинетику роста, является изменение толщины слоя (пленки) металла-растворителя, определяющего растущий кристалл алмаза от источника углерода-графита, через который путем диффузии поставляется растворенный углерод к растущему кристаллу. [c.355]

    При формовании кордных нитей в осадительную ванну при 20 °С диаметр нити во времени непрерывно уменьшается. В течение первых 5—11 с это уменьшение идет быстро, и процесс количественно описывается уравнением (7.26), что подтверждается удовлетворительным сохранением постоянства константы 2. Константа п принята равной единице, что соответствует спинодальному механизму зародышеобразования и росту одномерных стержневидных структур. Затем механизм структурообразования меняется и для его описания применимо уравнение вторичной кристаллизации (7.27). Константы Си/), рассчитанные по этому уравнению, также практически остаются постоянными. Наиболее наглядно две стадии структурообразования прослеживаются на кривой зависимости степени завершенности от времени, которая приведена на рис. 7.35. Спустя 5—6 с наблюдается резкий излом кривой, свидетельствующей об изменении механизма процесса. Аналогичные данные о кинетике структурообразования при формовании вискозных волокон получены другими методами по изменению оптической плотности коагулирующих пленок [94], малоугловому рассеянию поляризованного света [95], деформации коагулирующих нитей с помощью системы тормозных палочек и определением показателя двойного лучепреломления получаемых при этом нитей [97]. [c.206]

    Н. А. Фигуровский и Т. А. Комарова [373] по вопросу о механизме процесса кристаллизации отмечают, что результаты экспериментальных исследований, полученные при изучении кинетики кристаллизации, не дают оснований рассматривать процесс роста кристаллов как один из видов простых химических реакций первого (адсорбция ионов и молекул на поверхности кристаллов), второго или п-го порядка (десольватация ионов или молекул) либо же с точки зрения определяющего влияния на скорость роста кристаллов, явлений диффузии и других факторов. Они приходят к выводу, что механизм роста кристаллов до сих пор остается неясным. [c.99]

    Кинетика процесса кристаллизации. Скорость кристаллизации определяется рядом факторов, среди которых степень пересыщения раствора, температура, интенсивность перемешивания, наличие поверхностей, примеси и др. Указанные факторы влияют на механизм протекания процесса. Сложность учета влияния различных факторов заключается в том, что процесс возникновения кристаллических зародышей и рост иэ них кристаллов протекают одновременно. [c.345]


    В монографии описываются физико-химические процессы, протекающие на границе раздела фаз в наполненных полимерах, рассматриваются релаксационные процессы в этих полимерах, влияние наполнителей на кинетику и термодинамику кристаллизации, механические и реологические свойства наполненных систем, механизм усиливающего действия наполнителей в полимерах. [c.2]

    Кинетика кристаллизации. Исследование кинетики кристаллизации полимеров необходимо как для того, чтобы оценить общую скорость нарастания кристаллической фазы в полимере, так и для получения представления о механизме кристаллизации по виду кинетической кривой. Такой подход является достаточно общим и основывается на теории фазовых превращений, которая была развита Аврами в 1940 г. [c.194]

    Скорость роста идеально гладкой грани пропорциональна частоте появления на ней двумерных зародышей. Этот этап является весьма чувствительным к пересыщению, и вероятность образования нового слоя при пересыщениях ниже 25—50% совсем ничтожна. Дальнейшее разрастание слоя происходит быстро и от пересыщения не зависит. Однако в реальных кристаллах рост кристалличеекой поверхности становится непрерывным и осуществляется при ма/гых пересыщениях порядка 1 % и ниже. Это противоречие между теорией и практикой объясняет так называемая дислокационная теория. В настоящее время эти представления о механизме и кинетике роста кристаллов из пара являются общепринятыми. Согласно дислокационной теории винтовые дислокации, всегда присутствующие в реальном кристалле и выходящие на растущую поверхность, обеспечивают наличие готовых ступенек. Частицы, адсорбировапные поверхностью, свободно по ней перемещаются и, наконец, присоединяются к имеющемуся дислокационному выступу — ступеньке. В процессе кристаллизации ступеньки не зарастают, а сохраняются в новых слоях. Поэтому вся кинетика роста определяется движением ступенек и нет необходимости в появлении новых двумерных зародышей. При таком механизме роста полностью заполненных плоскостей нет, присоединение частиц происходит по спирали. -Для образцов с достаточно ( свершенной структурой плотность дислокаций, выходящих на поверхность, достигает 10 Поэтому рост такой поверхности происходит во многих точках одновременно и микрорельеф ее оказывается не гладким, а шероховатым. [c.60]

    При расчете процесса разложения апатита по второй технологической схеме с рециклом получили, что фазовые траектории лежа на странном аттракторе. На рис. 2 приведены фазовая траектория решения системы уравнений математической модели процесса получения ЭФК в десятисекционном экстракторе. Глобальный фазовый портрет второй технологической схемы напоминает странный аттрактор Лоренца. Видно, что фазовая траектория имеет два неустойчивых предельных цикла. Фазовые траектории, начинающиеся справа, накручиваются на правый предельный цикл, затем через некоторое время, осуществляя автоколебания, сдвигаются влево и накручиваются на левый предельный цикл. Через некоторое время начинается сдвиг вправо, и траектория вновь накручивается на правый предельный цикл и т. д. Наличие рецикла приводит к наложению на собственные автоколебания системы за счет обратной связи между механизмами разложения апатита и кристаллизации дигидрита сульфата кальция еще и колебаний, связанных с наличием цикла в экстракторе. Механизм колебаний за счет обратной связи по кинетике процесса был описан выше. Когда система, пройдя левый предельный циют, стремиться выйти на устойчивое положение - отрицательный режим по SO3, рецикл дает повышение концентрации SO3, что заставляет систему двигаться вправо, накручиваясь на правый предельный цикл. Затем система, проходя через правый предельный цикл, за счет образования пленки стремится ко второму устойчивому состоянию - повышению концентрации SO3 и понижению концентрации СаО, но рецикл приводит к понижению концентрации SO3, и фазовая траектория сдвигается влево. Было рассчитано, что странный аттрактор наблюдается при времени цикла в интервале 30-60 мин. При этом увеличение рецикла (время цикла менее 30 мин) приводит к уменьшению расстояния между предельными циклами, а уменьшение рецикла (время цикла более 60 мин) приводит к увеличению этого расстояния. Увеличение рецикла [c.44]

    Зиачеине диффузионных процессов. Д. играет важную роль в разл. областях науки и техники, в процессах, происходящих в живой и неживой природе. Д. оказьшает влияние на протекание или определяет механизм и кинетику хим. р-ций (см., напр., Диффузионных пламен метод, Макрокинетика), а также мн. физ.-хим. процессов и явлений мембранных, испарения, конденсации, кристаллизации, растворения, набухания, горения, каталитических, хроматографических, люминесцентных, электрич. и оптич. в полупроводниках, замедления нейтронов в ядерных реакторах и т.д. Большое значение имеет Д. при образовании на границах фаз двойного электрич. слоя, диффузиофорезе (см. Электроповерхностные явления) и элекрофорезе (см. Электрокинетические [c.104]

    В литературе приведены многочисленные данные о зависимости свойств образующихся цеолитов от состава реакционных смесей или гелей, характера реагирующих фаз и условий проведения синтеза (температура, давление, длительность образования) цеолитов. В то же время данных о механизме и кинетике кристаллизации довольно мало. Были проведены некоторые исследования скорости кристаллизации цеолитов А, X и морденита из натрий-алюмосиликатных гелей (рис. 4.7). Полученные кинетические кривые имеют сигмаобразную форму, что говорит о наличии индукционного периода, во время которого зародыши кристаллов достигают критического размера. Скорость кристаллизации цеолита X в значительной степени зависит от температуры. Индукционный период уменьшается с 60 ч при 50 °С до 3 ч при 100 °С. После первоначального быстрого роста кристаллов дальнейший непрерывный их рост поддерживать трудно. [c.343]

    Стрикленд-Конетебл Р. Ф. Кинетика и механизм кристаллизации. Л. Недра, [c.244]


Библиография для Кристаллизация механизм и кинетика: [c.134]    [c.303]    [c.160]    [c.373]    [c.169]    [c.703]    [c.188]   
Смотреть страницы где упоминается термин Кристаллизация механизм и кинетика: [c.396]    [c.228]    [c.146]    [c.374]    [c.141]    [c.189]    [c.686]    [c.98]    [c.303]    [c.197]   
Физикохимия полимеров (1968) -- [ c.134 , c.145 ]

Физико-химия полимеров 1978 (1978) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация кинетика



© 2025 chem21.info Реклама на сайте