Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликарбонат, способность

    Поликарбонаты применяют также для изготовления триплекса, органических стекол повышенной прочности, различных смотровых стекол. Такие стекла имеют высокую ударную вязкость (превышающую в 250 раз ударопрочность обычного безопасного стекла той же толщины), прозрачность, стойкость к атмосферным воздействиям, низкую теплопроводность, обеспечивающую хорошую изолирующую способность. Из поликарбоната изготавливают также абажуры для ламп и колпаки уличных фонарей. [c.283]


    При рассмотрении способности смешанных поликарбонатов к кристаллизации следует учитывать строение исходных бисфенолов. При этом возможны три случая  [c.108]

    Результаты многочисленных исследовательских работ показали, что ароматические поликарбонаты по физическим свойствам, морфологии и способности к кристаллизации значительно отличаются от других термопластичных полимеров. Присутствие чередующихся ароматических циклов с четвертичным углеродным атомом между ними, соединенных связью —О—СО—О—, обусловило необычную жесткость макромолекул поликарбоната в сочетании с эластичностью поликарбонатных цепей. [c.5]

    Вследствие высоких температур плавления поликарбонатов этой группы переработка их из расплава невозможна. Однако поликарбонаты, способные перерабатываться литьем под давлением при 370—400 °С, можно получить из смесей полициклических бисфенолов с другими бисфенолами, например с бисфенолом А. [c.244]

    Большой интерес представляет исследование надмолекулярной структуры полимеров с жесткими цепями, например поликарбонатов, способных находиться как в аморфном, так и в кристаллическом состоянии . Тщательное микроскопическое изучение образцов поликарбонатов, полученных литьем из расплава, показало, что они [c.212]

    Поликарбонаты способны сохранять заданные размеры. Благодаря этому, а также высоким прочностным показателям и теплостойкости поликарбонаты широко применяются для производства различных деталей аппаратов. [c.144]

    Подготовка материала. Большинство термопластов не ну- ждается в предварительной обработке перед загрузкой в литьевую машину, если не считать окрашивания в нужный цвет. Поли амиды, этролы и поликарбонат, способные при хранении увлажняться, необходимо подсушивать. При переработке увлажненных  [c.123]

    Поликарбонаты способны сохранять заданные размеры. Благодаря этому, а также высоким прочностным показателям и теплостойкости поликарбонаты широко применяются для производства различных деталей аппаратов. Высокая удельная ударная вязкость дает возможность применять поликарбонаты в каче- [c.410]

    Благодаря способности растворяться в полимерах в условиях их переработки красители легко диспергируются в пластмассах. Для крашения полиметилметакрилата, поли-стиролов, поликарбонатов, аминопластов и др. пригодны жиро- и спирторастворимые красители полиолефины и ПВХ окрашивают только устойчивыми к миграции орг. и неорг. пигментами. [c.505]


    Большое влияние на получение поликарбонатов с оптимальным молекулярным весом оказывают монофункциональные соединения, такие как фенол, в большом количестве содержащийся в техническом бисфеноле А и способный в условиях синтеза вступать в реакцию с фосгеном, приводя к обрыву растущей цепи. Так, присутствие 0,1% фенола (от взятого в реакцию бисфенола А) снижает молекулярный вес полимера с 28 000 до 16000 [7]. [c.17]

    Известно, что растворы поликарбоната, полученные поликонденсацией на поверхности раздела фаз, содержат в мелкодиспергированном состоянии побочный продукт реакции (в виде раствора хлористого натрия в воде) и воду, которые способны давать стойкие эмульсии. Поэтому очистка раствора поликарбоната в метиленхлориде крайне затруднена. [c.81]

    Макромолекулы поликарбонатов характеризуются большой жесткостью, ограниченным вращением ароматических ядер и наличием сравнительно больших участков, не содержащих полярных групп. Поэтому поликарбонаты имеют слабую тенденцию к кристаллизации, довольно высокие температуры стеклования, высокие вязкости расплавов. Вообще же способность поликарбонатов к кристаллизации зависит от их химического строения, молекулярного веса и, в некоторой степени, от молекулярно-весового распределения. [c.103]

    Такие фибриллы видны на электронно-микроскопических фотографиях поликарбоната. Фибриллы образуют как бы сетку с ромбообразными ячейками, находящимися в пересекающихся плоскостях. Такое строение и расположение фибрилл определяет рыхлость материала и способность при механических нагрузках к перемещению структурных элементов. [c.110]

    Отличительной особенностью изоморфного замещения звеньев является возможность четкого регулирования свойств сополимера, причем можно заранее определить необходимый для достижения определенного свойства состав исходной смеси реагирующих совместно низкомолекулярных соединений, исходя из их реакционной способности. Ввиду того, что изоморфное замещение звеньев в полимерах принципиально отличается от изоморфизма в низкомолекулярных неорганических и органических веществах и изучено недостаточно, в данном разделе рассмотрены факторы, определяющие возможность изоморфного замещения звеньев в цепи макромолекулы для смешанных поликарбонатов [27, 28]. В табл. 2 приведены пары бисфенолов, образующие сополимеры с изоморфным замещением звеньев любого состава. [c.111]

    Подтверждением этого является способность смешанных поликарбонатов к кристаллизации, которая может иметь место только в том случае, если замена одного основного звена другим не изменяет периода идентичности. [c.149]

    Зависимость температуры плавления смешанных поликарбонатов от состава носит другой характер [54]. В большинстве случаев кривые этой зависимости проходят через минимум и их форма описывается уравнением Флори. Температуры плавления понижаются в тех случаях, когда происходит совместная кристаллизация различных звеньев вследствие высокой способности к кристаллизации обоих гомополимеров. [c.149]

    Вследствие большей стойкости к гидролизу поликарбоната с метильными заместителями (ПК-4) он меньше теряет в массе за счет выделения летучих продуктов. Поглощение же кислорода, связанное с радикальноцепным процессом окисления, зависит от общего числа С—Н-свя-зей, способных окисляться при данной температуре. Наличие двух дополнительных метильных групп в основном звене ПК-4 приводит к несколько большей скорости поглощения кислорода при окислении этого поликарбоната, по сравнению с окислением ПК-3. [c.175]

    В связи с тем, что поликарбонаты перерабатываются главным образом из расплава при высоких температурах, стабилизаторы для этих полимеров должны быть устойчивы до 300—350 °С и не должны реагировать с полимером. Многие стандартные стабилизаторы не отвечают этим требованиям и использование их неприемлемо. Так, соединения типа фенолов и ароматических аминов способны взаимодействовать при повышенных температурах с карбонатными группами полимера, вызывая его распад. [c.197]

    Поликарбонаты являются термопластичными полимерами, плавкими и растворимыми. Для перевода их в термореактивное состояние используется сшивание макромолекул. Сшивание осуществляют введением химических соединений, а также облучением или нагреванием поликарбонатов, содержащих в макромолекулах группы, способные к образованию сшивок. [c.260]

    Однако, несмотря на эти ценные свойства, поликарбонаты до сих пор не нашли такого массового применения, как, например, полистирол или полиэтилен, что объясняется, прежде всего, их высокой стоимостью. Кроме того, в ряде отраслей промышленности применение поликарбонатов ограничено вследствие их растворимости во многих органических растворителях, способности растрескиваться под действием внутренних напряжений, особенно в присутствии растворителей или их паров, а также некоторой склонности к уменьшению предела выносливости под действием динамических нагрузок. [c.281]

    Пленки из ароматических смешанных поликарбонатов с высоким модулем упругости, способные сопротивляться деформации при набухании и высыхании гидрофильных фотографических слоев, применяют для изготовления фотопленок для репродукций. [c.283]


    Сложные структуры в процессе кристаллизации поликарбонатов на основе бисфенола А были получены из раствора различными методами [5]. При этом обнаружены ленты, фибриллы, глобулы и сферолиты. Существует мнение, что возникновение фибрилл следует рассматривать как промежуточную стадию образования сфероли тов, видимых в обычном микроскопе. Позднее была показана возможность образования сферолитов при медленном испарении растворителя из раствора поликарбоната на основе бисфенола А [6]. В этой же работе впервые подробно рассмотрены условия и возможность кристаллизации поликарбонатов, полученных поликонденсацией бисфенолов различного строения с фосгеном. Исходные бисфенолы являются производными ди(4-окси-фенил) метана и различаются заместителями у центрального углеродного атома или в ароматическом ядре При этом можно выделить, в зависимости от способно сти к кристаллизации, три группы полимеров. Первая группа поликарбонатов способна образовывать лишь структуры с ближним порядком (аморфное состояние), для второй группы характерно газокристаллическое со- [c.104]

    Растворимость и степень набухания ароматичёских поликарбонатов, способных к кристаллизации, значительно уменьшается вследствие высокой степени кристалличности или сочетания влияния молекулярной ориентации и кристалличности. Ни один из исследованных ароматических поликарбонатов не растворяется в воде, алифатических оксисоединениях, карбоновых кислотах или алифатических и циклоалифатических углеводородах. Наиболее подходящими растворителями для поликарбоната на основе бисфенола А являются 1,1,2,2-тетрахлорэтан, метиленхлорид, г ис-1,2-дихлорэтилен, хлороформ и 1,1,2-трихлорэтан. К соединениям, обладающим очень ограниченной растворяющей способностью, относятся 1,2-дихлорэтан, тиофен, диоксан, тетрагидрофуран, ацетофенон, анизол, бензонитрил, циклогексанон, диметилформамид и нитробензол. Набухание вызывают бензол, хлорбензол, 1,2-дихлорбензол, 1-хлорнаф-талин, тетрагидронафталин, дифениловый эфир, эиихлор-гидрин, гликолькарбонат, ацетон, этилацетат, четыреххлористый углерод, нитрометан, ацетонитрил и 1,1-дихлорэтан. В алифатических и циклоалифатических [c.113]

    Эти аддукты обладают большей реакционной способностью по отношению к алифатическим и ароматическим оксисоединениям, чем соответствующие производные угольной кислоты " . При взаимодействии аддуктов с оксисоединениями получаются эфиры угольной кислоты и гидрохлорид пиридина. Последний с фосгеном и эфирами хлоругольной кислоты не образует реакционноспособных соединений. Поэтому, как показано на схеме реакции, необходимо брать по крайней мере 2 моль пиридина на 1 моль дифенилолпропана. Для образования высокомолекулярного поликарбоната с хорошими свойствами необходимо вести реакцию в жидкой фазе, поэтому берется избыток пиридина по сравнению с рассчитанным количеством. Избыточное количество пиридина — дорогостоящего растворителя с неприятным запахом и токсичного — может 6biTjj заменено другим инертным растворителем. [c.42]

    Дифенилолпропан может взаимодействовать с К,Ы -карбонилди-имидазолом, что также приводит к поликарбонатам. Штааб впервые синтезировал замещенный диамид угольной кислоты — К,Ы -карбонилдиимидазол — взаимодействием имидазола с фосгеном. Автор исследовал также реакционную способность этого соединения и нашел, что оно легко реагирует с алифатическими и ароматическими окси- и аминосоединениями и может быть использовано для связывания амино- и оксигрупп этих соединений с карбонильным остатком, так же, как и фосген. Реакцию Ы,Ы -карбонилдиимидазола с дифенилолпропаном можно записать так  [c.46]

    Диаллилдиан благодаря наличию аллильной группы может быть использован для сшивания линейных макромолекул поликарбонатов. Такие поликарбонаты при нагревании на воздухе превращаются в неплавкие и нерастворимые вещества с хорошими механическими и электрическими свойствами . Их можно использовать для получения покрытий, высыхающих на воздухе или спекающихся в печах, а также как литьевые или формующиеся материалы. Если содержание диаллилдиана в таком смешанном полимере не превышает 10 мол. %, масса способна плавиться и ее можно перерабатывать экструзией . [c.56]

    Наибольшее практическое значение для синтеза поликарбонатов имеет диоксидифенилпропан (ди-фенилолпропан), который отличается хорошей теплостойкостью и способностью переходить в вязкотекучее состояние без разложения. [c.76]

    ЭЛЕКТРЕТЫ, диэлектрики, способные длительное время находиться в наэлектризованном состоянии после снятия внеш. воздействия, вызвавшего поляризацию. Получ. из восков и смол, полимеров, иеорг. поликристаллич. диэлектриков (титанаты щел.-зем. металлов, стеатиты, фарфор и др. керамич. диэлектрики), монокристаллич. неорг. диэлектриков (напр., галогениды щел. металлов, корунд), стекол, ситаллов и др. Наиб, распространены Э. из полимеров (гл. обр. из гомо- и сополимеров тетрафторэтилена, по-ливинилиденфторида, поликарбонатов, полиметилметакрилата, полиамидон), а также иэ восков —- каряаубского и пчелиного. [c.696]

    Было показано [5, 12], что эффективность третичных амниов и различных солей четвертичного аммониевого основания, используемых в качестве катализаторов при получении поликарбонатов межфазной иоликонденсацией, зависит от растворимости комплекса применяемого катализатора с фосгеном в органическом растворителе и от способности катализатора разрушаться при взаимодействии с фосгеном. Катализаторы, образующие с фосгеном комплексы, растворимые в органическом растворителе, и не разрушающиеся при взаимодействии с фосгеном, являются наиболее эффективными. Примерами таких катализаторов служат триэтиламин, триэтилбен-зиламмонийхлорид, диметилфенилбензиламмонийхлорид. [c.33]

    Изоморфное замещение ароматических звеньев поликарбоната на основе бисфенола А гибкими алифатическими звеньями триэтиленгликоля (ТЭГ) приводит к получению хорошо кристаллизующегося сополикарбоната, способного к эффективной ориентационной вытяжке. В то время как из гомополикарбоната на основе бисфенола А не удается получить волокно с удовлетвори- [c.120]

    Термодинамически понижение Т л с введением второго компонента можно объяснить, анализируя отношение Т пл —АНм1А8м- Действительно, введение второго компонента в системы смешанных поликарбонатов сопровождалось понижением степени кристалличности, что приводило к повышению энтальпии АНм и энтропии А8м. При этом температура плавления понижается вследствие большего изменения энтропии по сравнению с изменением энтальпии. Очевидно, что наибольшее понижение температуры плавления должно происходить при большом различии в структурах и кристаллизационной способности гомополимеров. [c.149]

    Известно, что гидроксильные группы, особенно фенольные, обусловливают нестойкость поликарбонатов к окислению. Кроме того, при получении поликарбоната в присутствии щелочи или третичных аминов, а также при его промывке водой, галогенформиатные группы полимера способны гидролизоваться до фенольных. [c.195]

    Такие поликарбонаты обладают повышенной способностью окрашиваться, например антрахиноновыми красителями. [c.255]

    Другой способ получения способных к" сшиванию поликарбонатов основан на введении в их макромолекулы эпоксигрупи. Для этого проводят реакцию производных угольной кислоты, например бисхлорформиата бисфенола А с диэпоксидом в среде органического растворителя в присутствии акцептора хлористого водорода [97]. Можно использовать также эпихлоргидрин, добавляя [c.263]

    Реакция аминолиза поликарбонатов может быть использована для поверхностной модификации иоликарбо-натных пленок и волокон [111]. При обработке поликарбоната ди- или полиаминами происходит значительное увеличение полярности иоликарбонатов. Это придает им новые поверхностные свойства смачиваемость, способность к окрашиванию кислотными красителями, адгезионные свойства. [c.266]

    Гибкую двухслойную пленку, способную свариваться, получают из поликарбоната и полиэтилена. Вначяле поликарбонатная пленка подвергается действию коро-нирующего разряда. Затем для улучшения адгезионных свойств на пленку наносят раствор тетрабутилтитаната или полиэтиленимина в органическом растворителе. После удаления растворителя на поверхность пленки экструдируют полиэтилен (расход полиэтилена составляет 0,44—0,49 Н/м ). Такой упаковочный материал не расслаивается, не теряет своей прочности после длительной выдержки при 70°С или действии жиров и может применяться в качестве упаковки для смазочных веществ, жирных пищевых продуктов и т. д. [158]. [c.275]


Смотреть страницы где упоминается термин Поликарбонат, способность: [c.461]    [c.509]    [c.17]    [c.67]    [c.199]    [c.17]    [c.67]   
Кристаллизация полимеров (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Поликарбонаты



© 2025 chem21.info Реклама на сайте