Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение окисляемости при анализе воздуха

    ГОСТ 3736-49. Бензины авиационные. Метод определения содержания экстралина. Взамен ГОСТ 3736-47. 7039 ГОСТ 3821-47. Методы определения влажности древесины (рекомендуемый). 7040 ГОСТ 3842-47. Витамин Да . Биологический метод определения. 7041 ГОСТ 3877-49. Нефтепродукты тяжелые. Метод определения содержания серы сжиганием в бомбе. Взамен ГОСТ 3877-37. 7042 ГОСТ 3880-47. Витамин А . Методы определения. 7043 ГОСТ 3954-47. Полуфабрикаты бумажного производства. Метод определения альфа-целлюлозы. Взамен ГОСТ 1909-42, п. 8 и ГОСТ 279-51, п. 5. 7044 ГОСТ 4339-48. Кокс каменноугольный. Определение содержания золы и общей серы ускоренным методом. Взамен ГОСТ 2669-44 в части совместного определения содержания золы и серы в коксе сжиганием в токе воздуха. 7045 ГОСТ 4539-48. Масла смазочные отработанные. Метод определения осадка центрифугированием (рекомендуемый). 7046 ГОСТ 4595-49. Вода хозяйственно-питьевого и промышленного водоснабжения. Методы химического анализа. Определение окисляемости марганцевокислым калием. 7047 ГОСТ 4790-49. Угли каменные и антрацит. [c.270]


    Исследование коррозионных и механических свойств проводились на сплавах, содержащих от 0,5 до 2 вес.% никеля и железа при их соотношении 1 2 1 1 2 1. Сплавы приготавливали из йодидного циркония 99,8%, электролитического никеля, переплавленного в вакууме, и порошкообразного восстановленного железа высокой чистоты методом дуговой плавки с нерасходуемым электродом в атмосфере чистого аргона. Химический анализ показал хорошее совпадение с шихтовым составом. Параллельно велось испытание нелегированного циркония. Слитки, нагретые в буре до 900°, ковали в прутки диаметром 6 мм, которые затем подвергали отпуску при 600° в течение 0,5 часа для снятия напряжений ковки. Из отпущенных прутков изготовляли цилиндрические образцы для коррозионных испытаний и стандартные разрывные образцы с диаметром рабочей части 3 мм. Изучена коррозионная стойкость указанных сплавов в воде при 350° и 170 атм в течение 5500 час., в углекислом газе ири 500° и 20 атм в течение 2000 час., проверена окисляемость на воздухе при 650° в течение 400 час., а также исследованы механические свойства при испытании на растяжение при комнатной температуре и 400° и сопротивление ползучести при температурах 400, 500°. Исследование коррозионной стойкости в воде производилось в автоклаве из стали 1Х18Н9Т. Основными характеристиками коррозии служили привес на единицу площади поверхности (Г/ж ) и качество поверхности образцов. Сплавы испытывали в течение 5500 час., взвешивание и осмотр поверхности сплавов производили через 250, 500, 1000, 1500, 2500, 3500, 5000, 5500 час. Испытание по определению коррозионной стойкости в среде углекислого газа проводили также в автоклаве из нержавеющей стали. Предварительно вакуумированный автоклав наполняли таким количеством углекислого газа, которое при 500° создавало давление 20 атм. Для определения коррозионной стойкости сплавов служили те же характеристики, что и в случае водной коррозии привес (в Г/м ) и качество поверхности. Длительность испытания составляла 2000 час., взвешивали через 250, 500, 1250 и 2000 час. Окисление сплавов на воздухе при 650° осуществляли в открытой шахтной печи в кварцевых стаканчиках. Осмотр поверхности сплавов, взвешивание и определение привеса на единицу поверхности G/S) производили через каждые 50 час. Испытание сплавов на растяжение при комнатной температуре и 400° вели на машине типа РМ-500, при автоматической записи кривых растяжения. Определены величины предела прочности (ов) и относительного удлинения (б). [c.114]


    Пирогаллол получается обычно нагреванием галловой кислоты (см. стр. 482), от которой при этом отщепляется СОа. Пирогаллол весьма быстро окисляется в щелочном растворе кислородом воздуха. Для того чтобы показать легкую окисляемость пирогаллола, в колбу насыпают небольшое количество его, приливают раствор едкого натра и быстро закрывают отверстие колбы проб- кой, соединенной с трубкой, другой конец которой опущен в стаканчик с подкрашенной водой (рис. 65). При взбалтывании пирогаллол начинает быстро буреть, а вода по трубочке поднимается вверх, занимая место кислорода, пошедшего на окисление пирогаллола, Пирогаллол применяется в фотографии как проявитель, а также при анализе газов для определения содержания кислорода в газовых смесях. [c.462]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    Изучение окисляемости ряда образцов масел и сравнение полученных таким образом результатов, проведенное Д. Барнардом с сотрудниками , позволили им сделать вывод, что ближе всего отвечают действительности результаты, получаемые окислением масла при 172° с продуванием через масло воздуха в колич тве л час. Критерием стабильности при этом являлось время окисления, после которого содержание осадка достигало 10 мг на каждые 10 г масла. Детальный анализ полученных авторами цифр не позволяет, однако, найти в рекомендуемом ими методе каких-либо преимуществ сравнительно с другими, испытанными ими. Как и в описанных выше исследованиях, В1 этой работе показано только, что масла, резко отличающиеся по своей стабильности от среднего уровня как в хорошую, так и в дурную сторону, могут быть оценены практически любым из испытанных авторами методов. Это справедливо и в ТОМ случае, если мы будем оценивать масло по количеству образовавшегося за определенный отрезок времени осадка и по средней скорости образования осадка в процессе окисления. Заметим, что даже такое грубое соответствие можно рассматрив1ать как веское подтверждение положения, что кар-терные осадки в двигателях обязаны своим образованием прежде всего окислению масла. [c.228]


Библиография для Определение окисляемости при анализе воздуха: [c.33]    [c.150]   
Смотреть страницы где упоминается термин Определение окисляемости при анализе воздуха: [c.350]    [c.369]   
Смотреть главы в:

Санитарная химия полимеров -> Определение окисляемости при анализе воздуха




ПОИСК





Смотрите так же термины и статьи:

Анализ определение



© 2025 chem21.info Реклама на сайте